1
|
Wei L, Huang Y, Chen Y, Wu J, Chen K, Zheng Z, Wang S, Xue L. Biomarkers for predicting the severity of spinal cord injury by proteomic analysis. Front Mol Neurosci 2023; 16:1153230. [PMID: 38155913 PMCID: PMC10753799 DOI: 10.3389/fnmol.2023.1153230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
Purpose Currently, there is a shortage of the protein biomarkers for classifying spinal cord injury (SCI) severity. We attempted to explore the candidate biomarkers for predicting SCI severity. Methods SCI rat models with mild, moderate, and severe injury were constructed with an electro-mechanic impactor. The behavior assessment and pathological examinations were conducted before and after SCI. Then, quantitative liquid chromatography-mass spectrometry (LC-MS/MS) was performed in spinal cord tissues with different extents of injury. The differentially expressed proteins (DEPs) in SCI relative to controls were identified, followed by Mfuzz clustering, function enrichment analysis, and protein-protein interaction (PPI) network construction. The differential changes of candidate proteins were validated by using a parallel reaction monitoring (PRM) assay. Results After SCI modeling, the motor function and mechanical pain sensitivity of SCI rats were impaired, dependent on the severity of the injury. A total of 154 DEPs overlapped in the mild, moderate, and severe SCI groups, among which 82 proteins were classified in clusters 1, 2, 3, 5, and 6 with similar expression patterns at different extents of injury. DEPs were closely related to inflammatory response and significantly enriched in the IL-17 signaling pathway. PPI network showed that Fgg (Fibrinogen gamma chain), Fga (Fibrinogen alpha chain), Serpinc1 (Antithrombin-III), and Fgb (Fibrinogen beta chain) in cluster 1 were significant nodes with the largest degrees. The upregulation of the significant nodes in SCI samples was validated by PRM. Conclusion Fgg, Fga, and Fgb may be the putative biomarkers for assessing the extent of SCI.
Collapse
Affiliation(s)
- Liangfeng Wei
- Fuzong Clinical Medical College of Fujian Medical University (900TH Hospital), Fuzhou, China
| | - Yubei Huang
- Department of Neurosurgery, Fuding Hospital, Fujian University of Traditional Chinese Medicine, Fuding, China
| | - Yehuang Chen
- Fuzong Clinical Medical College of Fujian Medical University (900TH Hospital), Fuzhou, China
| | - Jianwu Wu
- Fuzong Clinical Medical College of Fujian Medical University (900TH Hospital), Fuzhou, China
| | - Kaiqin Chen
- Department of Neurosurgery, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Zhaocong Zheng
- Fuzong Clinical Medical College of Fujian Medical University (900TH Hospital), Fuzhou, China
| | - Shousen Wang
- Fuzong Clinical Medical College of Fujian Medical University (900TH Hospital), Fuzhou, China
| | - Liang Xue
- Fuzong Clinical Medical College of Fujian Medical University (900TH Hospital), Fuzhou, China
| |
Collapse
|
2
|
Chen F, Xiong B, Xian S, Zhang J, Ding R, Xu M, Zhang Z. Fibroblast growth factor 5 protects against spinal cord injury through activating AMPK pathway. J Cell Mol Med 2023; 27:3706-3716. [PMID: 37950418 PMCID: PMC10718139 DOI: 10.1111/jcmm.17934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 11/12/2023] Open
Abstract
Excessive productions of inflammatory cytokines and free radicals are involved in spinal cord injury (SCI). Fibroblast growth factor 5 (FGF5) is associated with inflammatory response and oxidative damage, and we herein intend to determine its function in SCI. Lentivirus was instilled to overexpress or knockdown FGF5 expression in mice. Compound C or H89 2HCl were used to suppress AMP-activated protein kinase (AMPK) or protein kinase A (PKA), respectively. FGF5 level was significantly decreased during SCI. FGF5 overexpression mitigated, while FGF5 silence further facilitated inflammatory response, oxidative damage and SCI. Mechanically, FGF5 activated AMPK to attenuate SCI in a cAMP/PKA-dependent manner, while inhibiting AMPK or PKA with pharmacological methods significantly abolished the neuroprotective effects of FGF5 against SCI. More importantly, serum FGF5 level was decreased in SCI patients, and elevated serum FGF5 level often indicate better prognosis. Our study identifies FGF5 as an effective therapeutic and prognostic target for SCI.
Collapse
Affiliation(s)
- Feng Chen
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Bing‐Rui Xiong
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Shu‐Yue Xian
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jing Zhang
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Rui‐Wen Ding
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Ming Xu
- Department of Thoracic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zong‐Ze Zhang
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
3
|
Sun Z, Wang Y, Pang X, Wang X, Zeng H. Mechanisms of polydatin against spinal cord ischemia-reperfusion injury based on network pharmacology, molecular docking and molecular dynamics simulation. Bioorg Chem 2023; 140:106840. [PMID: 37683540 DOI: 10.1016/j.bioorg.2023.106840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Polydatin has shown considerable pharmacological activities in ischemia-reperfusion injuries of various organs. However, its effects and mechanisms in spinal cord ischemia-reperfusion injury have not been fully established. In this study, the mechanisms of polydatin against spinal cord ischemia-reperfusion injury were investigated via network pharmacology, molecular docking and molecular dynamics simulation. METHODS Spinal cord ischemia-reperfusion injury-related targets were obtained from the GeneCards database, while polydatin-related action targets were obtained from the CTD and SwissTarget databases. A protein-protein interaction network of potential targets was constructed using the String platform. After selecting the potential key targets, GO functional enrichment and KEGG pathway enrichment analyses were performed via the Metascape database, and a network map of "drug-target-pathway-disease" constructed. The relationships between polydatin and various key targets were assessed via molecular docking. Molecular dynamics simulation was conducted for optimal core protein-compound complexes obtained by molecular docking. RESULTS Topological analysis of the PPI network revealed 14 core targets. GO functional enrichment analysis revealed that 435 biological processes, 12 cell components and 29 molecular functions were enriched while KEGG pathway enrichment analysis revealed 91 enriched signaling pathways. Molecular docking showed that polydatin had the highest binding affinity for MAPK3, suggesting that MAPK3 is a key target of polydatin against spinal cord ischemia-reperfusion injury. Molecular dynamics simulations revealed good binding abilities between polydatin and MAPK3. CONCLUSIONS Polydatin exerts its effects on spinal cord ischemia-reperfusion injury through multiple targets and pathways. MAPK3 may be a key target of polydatin in spinal cord ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zhicheng Sun
- Department of Spinal Surgery, Xiangya Hospital of Central South University, Changsha, PR China.
| | - Yuanqing Wang
- School of Life Science and Technology, Central South University of Forestry and Technology, Changsha, PR China.
| | - Xiaoyang Pang
- Department of Spinal Surgery, Xiangya Hospital of Central South University, Changsha, PR China.
| | - Xiyang Wang
- Department of Spinal Surgery, Xiangya Hospital of Central South University, Changsha, PR China.
| | - Hao Zeng
- Department of Spine and Osteopathy Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, PR China.
| |
Collapse
|
4
|
Zeng CW. Advancing Spinal Cord Injury Treatment through Stem Cell Therapy: A Comprehensive Review of Cell Types, Challenges, and Emerging Technologies in Regenerative Medicine. Int J Mol Sci 2023; 24:14349. [PMID: 37762654 PMCID: PMC10532158 DOI: 10.3390/ijms241814349] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Spinal cord injuries (SCIs) can lead to significant neurological deficits and lifelong disability, with far-reaching physical, psychological, and economic consequences for affected individuals and their families. Current treatments for SCIs are limited in their ability to restore function, and there is a pressing need for innovative therapeutic approaches. Stem cell therapy has emerged as a promising strategy to promote the regeneration and repair of damaged neural tissue following SCIs. This review article comprehensively discusses the potential of different stem cell types, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and neural stem/progenitor cells (NSPCs), in SCI treatment. We provide an in-depth analysis of the unique advantages and challenges associated with each stem cell type, as well as the latest advancements in the field. Furthermore, we address the critical challenges faced in stem cell therapy for SCIs, including safety concerns, ethical considerations, standardization of protocols, optimization of transplantation parameters, and the development of effective outcome measures. We also discuss the integration of novel technologies such as gene editing, biomaterials, and tissue engineering to enhance the therapeutic potential of stem cells. The article concludes by emphasizing the importance of collaborative efforts among various stakeholders in the scientific community, including researchers, clinicians, bioengineers, industry partners, and patients, to overcome these challenges and realize the full potential of stem cell therapy for SCI patients. By fostering such collaborations and advancing our understanding of stem cell biology and regenerative medicine, we can pave the way for the development of groundbreaking therapies that improve the lives of those affected by SCIs.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Ma XY, Yang TT, Liu L, Peng XC, Qian F, Tang FR. Ependyma in Neurodegenerative Diseases, Radiation-Induced Brain Injury and as a Therapeutic Target for Neurotrophic Factors. Biomolecules 2023; 13:754. [PMID: 37238624 PMCID: PMC10216700 DOI: 10.3390/biom13050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The neuron loss caused by the progressive damage to the nervous system is proposed to be the main pathogenesis of neurodegenerative diseases. Ependyma is a layer of ciliated ependymal cells that participates in the formation of the brain-cerebrospinal fluid barrier (BCB). It functions to promotes the circulation of cerebrospinal fluid (CSF) and the material exchange between CSF and brain interstitial fluid. Radiation-induced brain injury (RIBI) shows obvious impairments of the blood-brain barrier (BBB). In the neuroinflammatory processes after acute brain injury, a large amount of complement proteins and infiltrated immune cells are circulated in the CSF to resist brain damage and promote substance exchange through the BCB. However, as the protective barrier lining the brain ventricles, the ependyma is extremely vulnerable to cytotoxic and cytolytic immune responses. When the ependyma is damaged, the integrity of BCB is destroyed, and the CSF flow and material exchange is affected, leading to brain microenvironment imbalance, which plays a vital role in the pathogenesis of neurodegenerative diseases. Epidermal growth factor (EGF) and other neurotrophic factors promote the differentiation and maturation of ependymal cells to maintain the integrity of the ependyma and the activity of ependymal cilia, and may have therapeutic potential in restoring the homeostasis of the brain microenvironment after RIBI or during the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin-Yu Ma
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Ting-Ting Yang
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Lian Liu
- Department of Pharmacology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Feng Qian
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Feng-Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
6
|
Girón SH, Gómez-Lahoz AM, Sanz JM, Fraile-Martínez O, Jiménez DJ, Garcia-Montero C, de Leon-Oliva D, Ortega MA, Atienza-Perez M, Diaz D, Lopez-Dolado E, Álvarez-Mon M. Patients with Chronic Spinal Cord Injury and a Long Period of Evolution Exhibit an Altered Cytokine Production by CD4 and CD8 T Cell Populations. Int J Mol Sci 2023; 24:ijms24087048. [PMID: 37108209 PMCID: PMC10138939 DOI: 10.3390/ijms24087048] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Spinal cord injury (SCI) is a disabling neurological condition coursing with serious multisystem affections and morbidities. Changes in immune cell compartments have been consistently reported in previous works, representing a critical point of study for understanding the pathophysiology and progression of SCI from acute to chronic stages. Some relevant variations in circulating T cells have been noticed in patients with chronic SCI, although the number, distribution, and function of these populations remain to be fully elucidated. Likewise, the characterization of specific T cell subpopulations and their related cytokine production can aid in understanding the immunopathological role of T cells in SCI progression. In this sense, the objective of the present study was to analyze and quantify the total number of different cytokine-producers T cells in the serum of patients with chronic SCI (n = 105) in comparison to healthy controls (n = 38) by polychromatic flow cytometry. Having this goal, we studied CD4 and CD8 lymphocytes as well as naïve, effector, and effector/central memory subpopulations. SCI patients were classified according to the duration of the lesion in chronic SCI with a short period of evolution (SCI-SP) (comprised between 1 and 5 years since initial injury), early chronic phase (SCI-ECP) (between 5 and 15 years since initial injury) and late-chronic phase (SCI-LCP) (>15 years since initial injury). Our results show that patients with chronic SCI exhibited an altered immune profile of cytokine-producer T cells, including CD4/CD8 naïve, effector, and memory subpopulations in comparison to HC. In particular, IL-10 and IL-9 production seems to be importantly altered, especially in patients with SCI-LCP, whereas changes in IL-17, TNF-α, and IFN-γ T cell populations have also been reported in this and other chronic SCI groups. In conclusion, our study demonstrates an altered profile of cytokine-producer T cells in patients with chronic SCI, with marked changes throughout the course of the disease. In more detail, we have observed significant variations in cytokine production by circulating naive, effector, and effector/central memory CD4 and CD8 T cells. Future studies should be directed to explore the possible clinical consequences of these changes or develop additional translational approaches in these groups of patients.
Collapse
Affiliation(s)
- Sergio Haro Girón
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Ana M Gómez-Lahoz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Jorge Monserrat Sanz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego J Jiménez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego de Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Mar Atienza-Perez
- Service of Rehabilitation, National Hospital for Paraplegic Patients, Carr. de la Peraleda, S/N, 45004 Toledo, Spain
| | - David Diaz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Elisa Lopez-Dolado
- Service of Rehabilitation, National Hospital for Paraplegic Patients, Carr. de la Peraleda, S/N, 45004 Toledo, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Service of Internal Medicine and Immune System Diseases-Rheumatology, University Hospital Príncipe de Asturias (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
7
|
New LE, Yanagawa Y, McConkey GA, Deuchars J, Deuchars SA. GABAergic regulation of cell proliferation within the adult mouse spinal cord. Neuropharmacology 2023; 223:109326. [PMID: 36336067 DOI: 10.1016/j.neuropharm.2022.109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
Abstract
Manipulation of neural stem cell proliferation and differentiation in the postnatal CNS is receiving significant attention due to therapeutic potential. In the spinal cord, such manipulations may promote repair in conditions such as multiple sclerosis or spinal cord injury, but may also limit excessive cell proliferation contributing to tumours such as ependymomas. We show that when ambient γ-aminobutyric acid (GABA) is increased in vigabatrin-treated or decreased by GAD67 allele haplodeficiency in glutamic acid decarboxylase67-green fluorescent protein (GAD67-GFP) mice of either sex, the numbers of proliferating cells respectively decreased or increased. Thus, intrinsic spinal cord GABA levels are correlated with the extent of cell proliferation, providing important evidence for manipulating these levels. Diazepam binding inhibitor, an endogenous protein that interacts with GABA receptors and its breakdown product, octadecaneuropeptide, which preferentially activates central benzodiazepine (CBR) sites, were highly expressed in spinal cord, especially in ependymal cells surrounding the central canal. Furthermore, animals with reduced CBR activation via treatment with flumazenil or Ro15-4513, or with a G2F77I mutation in the CBR binding site had greater numbers of Ethynyl-2'-deoxyuridine positive cells compared to control, which maintained their stem cell status since the proportion of newly proliferated cells becoming oligodendrocytes or astrocytes was significantly lower. Altering endogenous GABA levels or modulating GABAergic signalling through specific sites on GABA receptors therefore influences NSC proliferation in the adult spinal cord. These findings provide a basis for further study into how GABAergic signalling could be manipulated to enable spinal cord self-regeneration and recovery or limit pathological proliferative activity.
Collapse
Affiliation(s)
- Lauryn E New
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Yuchio Yanagawa
- Department of Genetic and Behavioural Neuroscience, Gunma University, Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Glenn A McConkey
- School of Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - Jim Deuchars
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Susan A Deuchars
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK.
| |
Collapse
|
8
|
Furumiya T, Itokazu T, Nakanishi T, Yamashita T. CXCR4 signaling regulates repair Schwann cell infiltration into the spinal cord after spinal cord injury in mice. Neurosci Res 2022; 191:38-47. [PMID: 36592826 DOI: 10.1016/j.neures.2022.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/12/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
Schwann cells are glial cells that myelinate neuronal axons in the peripheral nervous system (PNS). When the PNS is damaged, Schwann cells de-differentiate into p75-positive "repair Schwann cells," which contribute to neural circuit regeneration. Interestingly, Schwann cells in the dorsal roots are known to be reprogrammed to repair Schwann cells even after spinal cord injury (SCI) and then migrate into the injured spinal cord. However, the molecular mechanism underlying the migration of repair Schwann cells remains unknown. Since a recent in vitro study revealed the importance of CXCR4 signaling in Schwann cell migration, we investigated whether CXCR4 signaling is involved in the PNS-to-central nervous system (CNS) migration of repair Schwann cells after SCI. We revealed that repair Schwann cells express CXCR4, and its ligand CXCL12 is upregulated in the injured spinal cord. We also found that the pharmacological inhibition of CXCR4 signaling decreased the infiltration of repair Schwann cells. Moreover, CXCR4 agonist administration effectively increased the infiltration of repair Schwann cells along with improved motor function. These findings strongly suggest the involvement of CXCR4 signaling in the PNS-to-CNS migration of repair Schwann cells after SCI.
Collapse
Affiliation(s)
- Takeru Furumiya
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takahide Itokazu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Toru Nakanishi
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka, Japan; Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| |
Collapse
|
9
|
Deng S, Gan L, Liu C, Xu T, Zhou S, Guo Y, Zhang Z, Yang GY, Tian H, Tang Y. Roles of Ependymal Cells in the Physiology and Pathology of the Central Nervous System. Aging Dis 2022; 14:468-483. [PMID: 37008045 PMCID: PMC10017161 DOI: 10.14336/ad.2022.0826-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
Ependymal cells are indispensable components of the central nervous system (CNS). They originate from neuroepithelial cells of the neural plate and show heterogeneity, with at least three types that are localized in different locations of the CNS. As glial cells in the CNS, accumulating evidence demonstrates that ependymal cells play key roles in mammalian CNS development and normal physiological processes by controlling the production and flow of cerebrospinal fluid (CSF), brain metabolism, and waste clearance. Ependymal cells have been attached to great importance by neuroscientists because of their potential to participate in CNS disease progression. Recent studies have demonstrated that ependymal cells participate in the development and progression of various neurological diseases, such as spinal cord injury and hydrocephalus, raising the possibility that they may serve as a potential therapeutic target for the disease. This review focuses on the function of ependymal cells in the developmental CNS as well as in the CNS after injury and discusses the underlying mechanisms of controlling the functions of ependymal cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yaohui Tang
- Correspondence should be addressed to: Dr. Yaohui Tang, Med-X Research Institute and School of Biomedical Engineering Shanghai Jiao Tong University, Shanghai, China. .
| |
Collapse
|
10
|
Fujitani M, Miyajima H, Otani Y, Liu X. Maternal and Adult Interleukin-17A Exposure and Autism Spectrum Disorder. Front Psychiatry 2022; 13:836181. [PMID: 35211045 PMCID: PMC8861354 DOI: 10.3389/fpsyt.2022.836181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/14/2022] [Indexed: 11/26/2022] Open
Abstract
Epidemiological evidence in humans has suggested that maternal infections and maternal autoimmune diseases are involved in the pathogenesis of autism spectrum disorder. Animal studies supporting human results have shown that maternal immune activation causes brain and behavioral alterations in offspring. Several underlying mechanisms, including interleukin-17A imbalance, have been identified. Apart from the pro-inflammatory effects of interleukin-17A, there is also evidence to support the idea that it activates neuronal function and defines cognitive behavior. In this review, we examined the signaling pathways in both immunological and neurological contexts that may contribute to the improvement of autism spectrum disorder symptoms associated with maternal blocking of interleukin-17A and adult exposure to interleukin-17A. We first describe the epidemiology of maternal immune activation then focus on molecular signaling of the interleukin-17 family regarding its physiological and pathological roles in the embryonic and adult brain. In the future, it may be possible to use interleukin-17 antibodies to prevent autism spectrum disorder.
Collapse
Affiliation(s)
- Masashi Fujitani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Hisao Miyajima
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Yoshinori Otani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Xinlang Liu
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, Shimane, Japan
| |
Collapse
|