1
|
Gao Z, Luan X, Wang X, Han T, Li X, Li Z, Li P, Zhou Z. DNA damage response-related ncRNAs as regulators of therapy resistance in cancer. Front Pharmacol 2024; 15:1390300. [PMID: 39253383 PMCID: PMC11381396 DOI: 10.3389/fphar.2024.1390300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
The DNA damage repair (DDR) pathway is a complex signaling cascade that can sense DNA damage and trigger cellular responses to DNA damage to maintain genome stability and integrity. A typical hallmark of cancer is genomic instability or nonintegrity, which is closely related to the accumulation of DNA damage within cancer cells. The treatment principles of radiotherapy and chemotherapy for cancer are based on their cytotoxic effects on DNA damage, which are accompanied by severe and unnecessary side effects on normal tissues, including dysregulation of the DDR and induced therapeutic tolerance. As a driving factor for oncogenes or tumor suppressor genes, noncoding RNA (ncRNA) have been shown to play an important role in cancer cell resistance to radiotherapy and chemotherapy. Recently, it has been found that ncRNA can regulate tumor treatment tolerance by altering the DDR induced by radiotherapy or chemotherapy in cancer cells, indicating that ncRNA are potential regulatory factors targeting the DDR to reverse tumor treatment tolerance. This review provides an overview of the basic information and functions of the DDR and ncRNAs in the tolerance or sensitivity of tumors to chemotherapy and radiation therapy. We focused on the impact of ncRNA (mainly microRNA [miRNA], long noncoding RNA [lncRNA], and circular RNA [circRNA]) on cancer treatment by regulating the DDR and the underlying molecular mechanisms of their effects. These findings provide a theoretical basis and new insights for tumor-targeted therapy and the development of novel drugs targeting the DDR or ncRNAs.
Collapse
Affiliation(s)
- Ziru Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xinchi Luan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xuezhe Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Tianyue Han
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiaoyuan Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zeyang Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Fan R, Xu T, Kuang Y. Research on lncRNA CTBP1-DT as a potential therapeutic target to regulate cell function in colorectal cancer. Discov Oncol 2024; 15:225. [PMID: 38864997 PMCID: PMC11169288 DOI: 10.1007/s12672-024-01085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Colorectal cancer, which originates from the human colon or rectum, is one of the leading causes of death worldwide. Timely diagnosis and interventional therapy can significantly improve the prognostic survival of colorectal cancer patients, making regular screening and early detection essential. AIM To investigate the regulatory function of lncRNA CTBP1-DT (CTBP1-DT) on colorectal cancer cells and to assess its diagnostic significance. METHODS A total of 102 patients with colorectal cancer and 92 healthy individuals were selected. The levels of CTBP1-DT and microRNA-30a-5p (miR-30a-5p) in serum and cell samples of the above subjects were compared by RT-qPCR. The effects of CTBP1-DT and miR-30a-5p dysregulation on the biological functions of colorectal cancer cells were analyzed via CCK-8, flow cytometry and Transwell assays. In addition, the ability of CTBP1-DT and miR-30a-5p to early identify colorectal cancer patients was determined through ROC curve. RESULTS Serum CTBP1-DT was elevated in patients with colorectal cancer, which was obviously higher than in healthy controls. The expression of serum miR-30a-5p was downregulated in colorectal cancer. Both CTBP1-DT and miR-30a-5p have the value of distinguishing colorectal cancer, and the combined diagnostic ability is higher. Knockdown of CTBP1-DT directly targeted miR-30a-5p to repress cell activity and metastatic ability, whereas deregulation of miR-30a-5p eliminated the above inhibitory effects. CONCLUSION Overexpression of CTBP1-DT has a certain application potential in the diagnosis of colorectal cancer and may be a therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Ruizhi Fan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Soochow University, No.188, Shizi Street, Suzhou, 215006, Jiangsu, China
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Teng Xu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yuting Kuang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Soochow University, No.188, Shizi Street, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
3
|
Huang H, Liang X, Wu W, Yuan T, Chen Z, Wang L, Wu Z, Zhang T, Yang K, Wen K. FOXP3-regulated lncRNA NONHSAT136151 promotes colorectal cancer progression by disrupting QKI interaction with target mRNAs. J Cell Mol Med 2024; 28:e18068. [PMID: 38041531 PMCID: PMC10826441 DOI: 10.1111/jcmm.18068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
The role of lncRNAs in the pathogenesis of cancer, including colorectal cancer (CRC), has repeatedly been demonstrated. However, very few lncRNAs have been well annotated functionally. Our study identified a novel lncRNA upregulated in CRC, NONHSAT136151, which was correlated with clinical progression. In functional assays, NONHSAT136151 significantly enhanced CRC cell proliferation, migration and invasion. Mechanistically, NONHSAT136151 interacted with RNA-binding protein (RBP) QKI (Quaking) to interfere with QKI binding to target mRNAs and regulate their expression. As well, FOXP3 may be causally related to the dysregulation of NONHSAT136151 in CRC cells through its transcriptional activity. In conclusion, our findings identified a novel lncRNA regulated by FOXP3 participates in CRC progression through interacting with QKI, indicating a novel lncRNA-RBP interaction mechanism is involved in CRC pathogenesis.
Collapse
Affiliation(s)
- Handong Huang
- Soochow University Medical CollegeSuzhouJiangsuChina
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Xiaoxiang Liang
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Weizheng Wu
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Tao Yuan
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhengquan Chen
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Lin Wang
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhenyu Wu
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Tao Zhang
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Kai Yang
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Kunming Wen
- Soochow University Medical CollegeSuzhouJiangsuChina
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
4
|
Xiao L, Zhang Y, Luo Q, Guo C, Chen Z, Lai C. DHRS4-AS1 regulate gastric cancer apoptosis and cell proliferation by destabilizing DHX9 and inhibited the association between DHX9 and ILF3. Cancer Cell Int 2023; 23:304. [PMID: 38041141 PMCID: PMC10693172 DOI: 10.1186/s12935-023-03151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023] Open
Abstract
Gastric cancer (GC) causes millions of cancer-related deaths due to anti-apoptosis and rapid proliferation. However, the molecular mechanisms underlying GC cell proliferation and anti-apoptosis remain unclear. The expression levels of DHRS4-AS1 in GC were analyzed based on GEO database and recruited GC patients in our institution. We found that DHRS4-AS1 was significantly downregulated in GC. The expression of DHRS4-AS1 in GC tissues showed a significant correlation with tumor size, advanced pathological stage, and vascular invasion. Moreover, DHRS4-AS1 levels in GC tissues were significantly associated with prognosis. DHRS4-AS1 markedly inhibited GC cell proliferation and promotes apoptosis in vitro and in vivo assays. Mechanically, We found that DHRS4-AS1 bound to pro-oncogenic DHX9 (DExH-box helicase 9) and recruit the E3 ligase MDM2 that contributed to DHX9 degradation. We also confirmed that DHRS4-AS1 inhibited DHX9-mediated cell proliferation and promotes apoptosis. Furthermore, we found DHX9 interact with ILF3 (Interleukin enhancer Binding Factor 3) and activate NF-kB Signaling in a ILF3-dependent Manner. Moreover, DHRS4-AS1 can also inhibit the association between DHX9 and ILF3 thereby interfered the activation of the signaling pathway. Our results reveal new insights into mechanisms underlying GC progression and indicate that LncRNA DHRS4-AS1 could be a future therapeutic target and a biomarker for GC diagnosis.
Collapse
Affiliation(s)
- Lei Xiao
- Department of General Surgery, Xiangya Hospital of Central South University, Xiangya Road No. 87, Kaifu District, Changsha, 410000, Hunan Province, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumors, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yang Zhang
- Department of General Surgery, Xiangya Hospital of Central South University, Xiangya Road No. 87, Kaifu District, Changsha, 410000, Hunan Province, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumors, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qingqing Luo
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, Hunan Province, China
| | - Cao Guo
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zihua Chen
- Department of General Surgery, Xiangya Hospital of Central South University, Xiangya Road No. 87, Kaifu District, Changsha, 410000, Hunan Province, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumors, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Chen Lai
- Department of General Surgery, Xiangya Hospital of Central South University, Xiangya Road No. 87, Kaifu District, Changsha, 410000, Hunan Province, China.
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumors, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
5
|
Wu S, Zhong B, Yang Y, Wang Y, Pan Z. ceRNA networks in gynecological cancers progression and resistance. J Drug Target 2023; 31:920-930. [PMID: 37724808 DOI: 10.1080/1061186x.2023.2261079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/14/2023] [Indexed: 09/21/2023]
Abstract
Gynecological cancers are the second most common types of cancer in women. Clinical diagnosis of these cancers is often delayed or misdiagnosed due to lack of insight into their tumorigenesis mechanism and specific diagnostic biomarkers. Many studies have demonstrated that competing endogenous RNAs (ceRNAs) modulate the progression and resistance of gynecological cancer through microRNA (miRNA)-mediated mechanisms, which affect gene expression in multiple cancer-related pathways. Here we review studies on the involvement of the ceRNA hypothesis in the progression and resistance of gynaecological cancers to validate some ceRNAs as therapeutic targets and predictive biomarkers.
Collapse
Affiliation(s)
- Shuqin Wu
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Baoshan Zhong
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuxin Yang
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yurou Wang
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zezheng Pan
- Faculty of Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Ma H, Qi G, Han F, Gai P, Peng J, Kong B. HMGB3 promotes the malignant phenotypes and stemness of epithelial ovarian cancer through the MAPK/ERK signaling pathway. Cell Commun Signal 2023; 21:144. [PMID: 37328851 PMCID: PMC10273509 DOI: 10.1186/s12964-023-01172-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/21/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Ovarian cancer, particularly epithelial ovarian cancer (EOC), is the leading cause of cancer-related mortality among women. Our previous study revealed that high HMGB3 levels are associated with poor prognosis and lymph node metastasis in patients with high-grade serous ovarian carcinoma; however, the role of HMGB3 in EOC proliferation and metastasis remains unknown. METHODS MTT, clonogenic, and EdU assays were used to assess cell proliferation. Transwell assays were performed to detect cell migration and invasion. Signaling pathways involved in HMGB3 function were identified by RNA sequencing (RNA-seq). MAPK/ERK signaling pathway protein levels were evaluated by western blot. RESULTS HMGB3 knockdown inhibited ovarian cancer cell proliferation and metastasis, whereas HMGB3 overexpression facilitated these processes. RNA-seq showed that HMGB3 participates in regulating stem cell pluripotency and the MAPK signaling pathway. We further proved that HMGB3 promotes ovarian cancer stemness, proliferation, and metastasis through activating the MAPK/ERK signaling pathway. In addition, we demonstrated that HMGB3 promotes tumor growth in a xenograft model via MAPK/ERK signaling. CONCLUSIONS HMGB3 promotes ovarian cancer malignant phenotypes and stemness through the MAPK/ERK signaling pathway. Targeting HMGB3 is a promising strategy for ovarian cancer treatment that may improve the prognosis of women with this disease. Video Abstract.
Collapse
Affiliation(s)
- Hanlin Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Gonghua Qi
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China
| | - Fang Han
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Panpan Gai
- 71217 of the Chinese People's Liberation Army, Laiyang, 265200, China
| | - Jiali Peng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China.
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
7
|
Wei Y, Han S, Wen J, Liao J, Liang J, Yu J, Chen X, Xiang S, Huang Z, Zhang B. E26 transformation-specific transcription variant 5 in development and cancer: modification, regulation and function. J Biomed Sci 2023; 30:17. [PMID: 36872348 PMCID: PMC9987099 DOI: 10.1186/s12929-023-00909-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
E26 transformation-specific (ETS) transcription variant 5 (ETV5), also known as ETS-related molecule (ERM), exerts versatile functions in normal physiological processes, including branching morphogenesis, neural system development, fertility, embryonic development, immune regulation, and cell metabolism. In addition, ETV5 is repeatedly found to be overexpressed in multiple malignant tumors, where it is involved in cancer progression as an oncogenic transcription factor. Its roles in cancer metastasis, proliferation, oxidative stress response and drug resistance indicate that it is a potential prognostic biomarker, as well as a therapeutic target for cancer treatment. Post-translational modifications, gene fusion events, sophisticated cellular signaling crosstalk and non-coding RNAs contribute to the dysregulation and abnormal activities of ETV5. However, few studies to date systematically summarized the role and molecular mechanisms of ETV5 in benign diseases and in oncogenic progression. In this review, we specify the molecular structure and post-translational modifications of ETV5. In addition, its critical roles in benign and malignant diseases are summarized to draw a panorama for specialists and clinicians. The updated molecular mechanisms of ETV5 in cancer biology and tumor progression are delineated. Finally, we prospect the further direction of ETV5 research in oncology and its potential translational applications in the clinic.
Collapse
Affiliation(s)
- Yi Wei
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenqi Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyuan Wen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
8
|
Feng J, Yu Y, Yin W, Qian S. Development and verification of a 7-lncRNA prognostic model based on tumor immunity for patients with ovarian cancer. J Ovarian Res 2023; 16:31. [PMID: 36739404 PMCID: PMC9898952 DOI: 10.1186/s13048-023-01099-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/11/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Both immune-reaction and lncRNAs play significant roles in the proliferation, invasion, and metastasis of ovarian cancer (OC). In this study, we aimed to construct an immune-related lncRNA risk model for patients with OC. METHOD Single sample GSEA (ssGSEA) algorithm was used to analyze the proportion of immune cells in The Cancer Genome Atlas (TCGA) and the hclust algorithm was used to conduct immune typing according to the proportion of immune cells for OC patients. The stromal and immune scores were computed utilizing the ESTIMATE algorithm. Weighted gene co-expression network analysis (WGCNA) and differentially expressed genes (DEGs) analyses were utilized to detect immune cluster-related lncRNAs. The least absolute shrinkage and selection operator (LASSO) regression was conducted for lncRNA selection. The selected lncRNAs were used to construct a prognosis-related risk model, which was then validated in Gene Expression Omnibus (GEO) database and in vitro validation. RESULTS We identify two subtypes based on the ssGSEA analysis, high immunity cluster (immunity_H) and low immunity cluster (immunity_L). The proportion of patients in immunity_H cluster was significantly higher than that in immunity_L cluster. The ESTIMATE related scores are relative high in immunity_H group. Through WGCNA and LASSO analyses, we identified 141 immune cluster-related lncRNAs and found that these genes were mainly enriched in autophagy. A signature consisting of 7 lncRNAs, including AL391832.3, LINC00892, LINC02207, LINC02416, PSMB8.AS1, AC078788.1 and AC104971.3, were selected as the basis for classifying patients into high- and low-risk groups. Survival analysis and area under the ROC curve (AUC) of the signature pointed out that this risk model had high accuracy in predicting the prognosis of patients with OC. We also conducted the drug sensitive prediction and found that rapamycin outperformed in patient with high risk score. In vitro experiments also confirmed our prediction. CONCLUSIONS We identified 7 immune-related prognostic lncRNAs that effectively predicted survival in OC patients. These findings may offer a valuable indicator for clinical stratification management and personalized therapeutic options for these patients.
Collapse
Affiliation(s)
- Jing Feng
- grid.452270.60000 0004 0614 4777Gynecology Department 2, Cangzhou Central Hospital, No. 16, Xinhua West Road, Yunhe District, Cangzhou, Hebei Province 061000 China
| | - Yiping Yu
- grid.452270.60000 0004 0614 4777Gynecology Department 2, Cangzhou Central Hospital, No. 16, Xinhua West Road, Yunhe District, Cangzhou, Hebei Province 061000 China
| | - Wen Yin
- grid.452270.60000 0004 0614 4777Gynecology Department 2, Cangzhou Central Hospital, No. 16, Xinhua West Road, Yunhe District, Cangzhou, Hebei Province 061000 China
| | - Sumin Qian
- grid.452270.60000 0004 0614 4777Gynecology Department 2, Cangzhou Central Hospital, No. 16, Xinhua West Road, Yunhe District, Cangzhou, Hebei Province 061000 China
| |
Collapse
|
9
|
Zhang L, Zong L, Li W, Ning L, Zhao Y, Wang S, Wang L. Construction of lncRNA prognostic model related to cuproptosis in esophageal carcinoma. Front Genet 2023; 14:1120827. [PMID: 37124619 PMCID: PMC10133708 DOI: 10.3389/fgene.2023.1120827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Background: Esophageal carcinoma (ESCA) is one of the most prevalent malignant tumors in the world. The prognosis of patients has significantly improved with the development of surgery, targeted therapy and immunotherapy. But the 5-year survival rate of ESCA patients is still incredibly low. Cuproptosis is a type of mitochondrial cell death induced by copper. It is unclear how cuproptosis-related lncRNAs (CRLs) affect ESCA prognosis. Methods: In this study, we obtained the clinical data of ESCA patients, the transcriptome data from TCGA and identified CRLs by co-expression analysis, lasso regression, and cox regression analysis, to build a prognostic model. Then we validated the prognostic model using the Kaplan-Meier curve, cox regression analysis, and ROC, to create a nomogram based on risk score to forecast the prognosis of ESCA. Next, the immune escape of the CRLs was examined using the TIDE algorithm to assess its sensitivity to possible ESCA medications. Results: To predict the prognosis of ESCA patients, we created a predictive model using 6 CRLs (AC034199.1, AC125437.1, AC107032.2, CTBP1-DT, AL024508.1, and AC008610.1), validated by the Kaplan-Meier and ROC curves. The model has a higher diagnostic value compared to other clinical features. The 6 CRLs expressed high in TCGA and ESCA specimens. Enrichment analysis revealed CRLs largely contributed to the interaction between cytokines and their receptors as well as complement coagulation cascades. The immunity escape analysis demonstrated that immunotherapy had a worse effect in the low-risk group than in the high-risk group. Additionally, we screened out potential antineoplastic drugs according to the results of the immunoassay and obtained 5 drugs, including CP-466722, crizotinib, MS-275, KIN001-135, and CP-466722. Conclusion: The prognosis of patients with ESCA can be correctly predicted by the 6 CRLs chosen from this investigation. It lays the groundwork for more investigation into the ESCA mechanism and the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Liming Zhang
- Department of Clinical Medicine, Jining Medical University, Jining, China
| | - Ling Zong
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Wenhui Li
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Lu Ning
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Yajun Zhao
- Department of Clinical Medicine, Jining Medical University, Jining, China
| | - Shaoqiang Wang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- *Correspondence: Shaoqiang Wang, ; Lina Wang,
| | - Lina Wang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- *Correspondence: Shaoqiang Wang, ; Lina Wang,
| |
Collapse
|
10
|
Punzón-Jiménez P, Lago V, Domingo S, Simón C, Mas A. Molecular Management of High-Grade Serous Ovarian Carcinoma. Int J Mol Sci 2022; 23:13777. [PMID: 36430255 PMCID: PMC9692799 DOI: 10.3390/ijms232213777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) represents the most common form of epithelial ovarian carcinoma. The absence of specific symptoms leads to late-stage diagnosis, making HGSOC one of the gynecological cancers with the worst prognosis. The cellular origin of HGSOC and the role of reproductive hormones, genetic traits (such as alterations in P53 and DNA-repair mechanisms), chromosomal instability, or dysregulation of crucial signaling pathways have been considered when evaluating prognosis and response to therapy in HGSOC patients. However, the detection of HGSOC is still based on traditional methods such as carbohydrate antigen 125 (CA125) detection and ultrasound, and the combined use of these methods has yet to support significant reductions in overall mortality rates. The current paradigm for HGSOC management has moved towards early diagnosis via the non-invasive detection of molecular markers through liquid biopsies. This review presents an integrated view of the relevant cellular and molecular aspects involved in the etiopathogenesis of HGSOC and brings together studies that consider new horizons for the possible early detection of this gynecological cancer.
Collapse
Affiliation(s)
- Paula Punzón-Jiménez
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| | - Victor Lago
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Obstetrics and Gynecology, CEU Cardenal Herrera University, 46115 Valencia, Spain
| | - Santiago Domingo
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
| | - Carlos Simón
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02215, USA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aymara Mas
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| |
Collapse
|
11
|
Guo L, Xu N, Qiu D, Yang X, Zhao S, Zhao H. Comprehensive analysis of m6A-modified circRNAs in peritoneal metastasis of high grade serious carcinoma of ovary. Front Oncol 2022; 12:988578. [PMID: 36203450 PMCID: PMC9530810 DOI: 10.3389/fonc.2022.988578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose High-grade serous ovarian cancer (HGSOC) remains the most lethal female cancer due to metastasis. CircRNAs are recently identified to be modified by N6-methyladenosine (m6A) in many cells. However, the significance of m6A-modified circular RNAs (circRNAs) has not been elucidated in HGSOC peritoneal metastasis. Here, we aimed to investigate the participation and potential functions of m6A-modified circRNAs in HGSCO peritoneal metastasis. Methods Cancerous tissues were collected from the in situ and the peritoneal metastasis lesions of HGSCO patients. M6A-tagged circRNAs were identified by m6A-modified RNA immunoprecipitation sequencing (m6A-RIP-seq). Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to predict the potential functions of the m6A-modified circRNAs. Results For the m6A-modified circRNAs, 259 were upregulated and 227 were downregulated in the peritoneal metastasis than in the situ lesions of HGSCO patients. For the m6A peaks, 1541 were upregulated and 1293 were downregulated in the peritoneal metastasis than in the in situ lesions of HGSCO patients. For the differential expressed circRNAs, 1911(19.6%) were upregulated and 2883(29.6%) were downregulated in the peritoneal metastasis than in the in situ lesions of HGSCO patients. The upregulated m6A-modified circRNAs were associated with the HIF-1 signaling. The downregulated m6A-modified circRNAs were associated with the MAPK signaling. Conclusions This work firstly identified the transcriptome-wide map of m6A-modified circRNAs in peritoneal metastasis of HGSCO. Our findings provided novel evidences about the participation of m6A-modified circRNAs via HIF-1 and MAPK signaling and a new insight in molecular target of HGSCO peritoneal metastasis.
Collapse
|