1
|
Hu X, Dong C, Zou D, Wei C, Wang Y, Li Z, Duan H, Li Z. Directed differentiation of human embryonic stem cells into conjunctival epithelial cells. Exp Cell Res 2024; 442:114227. [PMID: 39209142 DOI: 10.1016/j.yexcr.2024.114227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Severe conjunctival damage can lead to extensive ocular cicatrisation, fornix shortening, and even ocular surface failure, resulting in significant vision impairment. Conjunctival reconstruction is the primary therapeutic strategy for these clinical conjunctival diseases. However, there have been limited studies on induced differentiation of conjunctival epithelial cells derived from stem cells. In this study, we established a chemical defined differentiation protocol from human embryonic stem cells (hESCs) into conjunctival epithelial cells. hES cell line H1 was used for differentiation, and RT-qPCR, immunofluorescence staining, Periodic-acid-Schiff staining (PAS), and transcriptome analysis were employed to identify the differentiated cells. Here, to imitate the development of the vertebrate conjunctiva, hESCs were induced using a three-step process involving first chetomin was used to induce ocular surface ectoderm, then nicotinamide was used to induce ocular surface epithelial progenitor cells, and finally epidermal growth factor, keratinocyte growth factor and other factors were used to differentiate mature conjunctival epithelial cells. hESC-derived conjunctival epithelial cells expressed mature conjunctival epithelial lineage markers (including PAX6, P63, K13). The presence of goblet cells was confirmed by positive PAS. Transcriptome analysis revealed that hESC-derived conjunctival epithelial cells possessed a more naïve phenotype, and exhibited greater proliferation capacity compared to mature human conjunctival epithelial cells, suggesting their potential as alternative seed cells for conjunctival reconstruction.
Collapse
Affiliation(s)
- Xiangyue Hu
- Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China; Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Chunxiao Dong
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250021, China
| | - Dulei Zou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250021, China
| | - Chao Wei
- Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China; Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Yani Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Zongren Li
- 970 Hospital of Chinese PLA Joint Logistic Support Force, Weihai, 264200, China
| | - Haoyun Duan
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China.
| | - Zongyi Li
- Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China; Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China.
| |
Collapse
|
2
|
Zeidler JD, Chini CC, Kanamori KS, Kashyap S, Espindola-Netto JM, Thompson K, Warner G, Cabral FS, Peclat TR, Gomez LS, Lopez SA, Wandersee MK, Schoon RA, Reid K, Menzies K, Beckedorff F, Reid JM, Brachs S, Meyer RG, Meyer-Ficca ML, Chini EN. Endogenous metabolism in endothelial and immune cells generates most of the tissue vitamin B3 (nicotinamide). iScience 2022; 25:105431. [PMID: 36388973 PMCID: PMC9646960 DOI: 10.1016/j.isci.2022.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/10/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
In mammals, nicotinamide (NAM) is the primary NAD precursor available in circulation, a signaling molecule, and a precursor for methyl-nicotinamide (M-NAM) synthesis. However, our knowledge about how the body regulates tissue NAM levels is still limited. Here we demonstrate that dietary vitamin B3 partially regulates plasma NAM and NAM-derived metabolites, but not their tissue levels. We found that NAD de novo synthesis from tryptophan contributes to plasma and tissue NAM, likely by providing substrates for NAD-degrading enzymes. We also demonstrate that tissue NAM is mainly generated by endogenous metabolism and that the NADase CD38 is the main enzyme that produces tissue NAM. Tissue-specific CD38-floxed mice revealed that CD38 activity on endothelial and immune cells is the major contributor to tissue steady-state levels of NAM in tissues like spleen and heart. Our findings uncover the presence of different pools of NAM in the body and a central role for CD38 in regulating tissue NAM levels.
Collapse
Affiliation(s)
- Julianna D. Zeidler
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Claudia C.S. Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Karina S. Kanamori
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sonu Kashyap
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jair M. Espindola-Netto
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Katie Thompson
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Gina Warner
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Fernanda S. Cabral
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Thais R. Peclat
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lilian Sales Gomez
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sierra A. Lopez
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Miles K. Wandersee
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Renee A. Schoon
- Oncology Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Kimberly Reid
- Interdisciplinary School of Health of Sciences, University Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Keir Menzies
- Interdisciplinary School of Health of Sciences, University Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Felipe Beckedorff
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joel M. Reid
- Oncology Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Sebastian Brachs
- Charité – Universitätsmedizin Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Ralph G. Meyer
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Mirella L. Meyer-Ficca
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Eduardo Nunes Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA,Corresponding author
| |
Collapse
|