1
|
Liang X, Zhang C, Shen L, Ding L, Guo H. Role of non‑coding RNAs in UV‑induced radiation effects (Review). Exp Ther Med 2024; 27:262. [PMID: 38756908 PMCID: PMC11097301 DOI: 10.3892/etm.2024.12550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024] Open
Abstract
Ultraviolet (UV) is divided into UVA (long-wave, 320-400 nm), UVB (middle-wave, 280-320 nm) and UVC (short-wave, 100-280 nm) based on wavelength. UV radiation (UVR) from sunlight (UVA + UVB) is a major cause of skin photodamage including skin inflammation, aging and pigmentation. Accidental exposure to UVC burns the skin and induces skin cancer. In addition to the skin, UV radiation can also impair visual function. Non-coding RNAs (ncRNAs) are a class of functional RNAs that do not have coding activity but can control cellular processes at the post-transcriptional level, including microRNA (miRNA), long non-coding RNA (lncRNA) and circulatory RNA (circRNA). Through a review of the literature, it was determined that UVR can affect the expression of various ncRNAs, and that this regulation may be wavelength specific. Functionally, ncRNAs participate in the regulation of photodamage through various pathways and play pathogenic or protective regulatory roles. In addition, ncRNAs that are upregulated or downregulated by UVR can serve as biomarkers for UV-induced diseases, aiding in diagnosis and prognosis assessment. Therapeutic strategies targeting ncRNAs, including the use of natural drugs and their extracts, have shown protective effects against UV-induced photodamage. In the present review, an extensive summarization of previous studies was performed and the role and mechanism of ncRNAs in UV-induced radiation effects was reviewed to aid in the diagnosis and treatment of UV-related diseases.
Collapse
Affiliation(s)
- Xiaofei Liang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161000, P.R. China
| | - Chao Zhang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161000, P.R. China
| | - Lijuan Shen
- Department of Laboratory Medicine, Qiqihar MingZhu Hospital, Qiqihar, Heilongjiang 161000, P.R. China
| | - Ling Ding
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161000, P.R. China
| | - Haipeng Guo
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161000, P.R. China
| |
Collapse
|
2
|
Huang Y, Gu L, Li GM. Heat shock protein DNAJA2 regulates transcription-coupled repair by triggering CSB degradation via chaperone-mediated autophagy. Cell Discov 2023; 9:107. [PMID: 37907457 PMCID: PMC10618452 DOI: 10.1038/s41421-023-00601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/01/2023] [Indexed: 11/02/2023] Open
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) is an important genome maintenance system that preferentially removes DNA lesions on the transcribed strand of actively transcribed genes, including non-coding genes. TC-NER involves lesion recognition by the initiation complex consisting of RNA polymerase II (Pol II) and Cockayne syndrome group B (CSB), followed by NER-catalyzed lesion removal. However, the efficient lesion removal requires the initiation complex to yield the right of way to the excision machinery, and how this occurs in a timely manner is unknown. Here we show that heat shock protein DNAJA2 facilitates the HSC70 chaperone-mediated autophagy (CMA) to degrade CSB during TC-NER. DNAJA2 interacts with and enables HSC70 to recognize sumoylated CSB. This triggers the removal of both CSB and Pol II from the lesion site in a manner dependent on lysosome receptor LAMP2A. Defects in DNAJA2, HSC70 or LAMP2A abolish CSB degradation and block TC-NER. Our findings discover DNAJA2-mediated CMA as a critical regulator of TC-NER, implicating the DNAJA2-HSC70-CMA axis factors in genome maintenance.
Collapse
Affiliation(s)
- Yaping Huang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Liya Gu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Chinese Institutes for Medical Research, Beijing, China.
| |
Collapse
|
3
|
Ibañez-Solé O, Barrio I, Izeta A. Age or lifestyle-induced accumulation of genotoxicity is associated with a length-dependent decrease in gene expression. iScience 2023; 26:106368. [PMID: 37013186 PMCID: PMC10066539 DOI: 10.1016/j.isci.2023.106368] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/26/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
DNA damage has long been advocated as a molecular driver of aging. DNA damage occurs in a stochastic manner, and is therefore more likely to accumulate in longer genes. The length-dependent accumulation of transcription-blocking damage, unlike that of somatic mutations, should be reflected in gene expression datasets of aging. We analyzed gene expression as a function of gene length in several single-cell RNA sequencing datasets of mouse and human aging. We found a pervasive age-associated length-dependent underexpression of genes across species, tissues, and cell types. Furthermore, we observed length-dependent underexpression associated with UV-radiation and smoke exposure, and in progeroid diseases, Cockayne syndrome, and trichothiodystrophy. Finally, we studied published gene sets showing global age-related changes. Genes underexpressed with aging were significantly longer than overexpressed genes. These data highlight a previously undetected hallmark of aging and show that accumulation of genotoxicity in long genes could lead to reduced RNA polymerase II processivity.
Collapse
Affiliation(s)
- Olga Ibañez-Solé
- Tissue Engineering Group; Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain
| | - Irantzu Barrio
- Department of Mathematics, University of the basque Country UPV/EHU, 48940 Leioa, Spain
- Basque Center for Applied Mathematics, BCAM, 48009 Bilbao, Spain
| | - Ander Izeta
- Tissue Engineering Group; Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain
- Tecnun-University of Navarra, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
4
|
Liang F, Li B, Xu Y, Gong J, Zheng S, Zhang Y, Wang Y. Identification and characterization of Necdin as a target for the Cockayne syndrome B protein in promoting neuronal differentiation and maintenance. Pharmacol Res 2023; 187:106637. [PMID: 36586641 DOI: 10.1016/j.phrs.2022.106637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/01/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Cockayne syndrome (CS) is a devastating autosomal recessive genetic disorder, mainly characterized by photosensitivity, growth failure, neurological abnormalities, and premature aging. Mutations in CSB (ERCC6) are associated with almost all clinical phenotypes resembling classic CS. Using RNA-seq approach in multiple cell types, we identified Necdin (NDN) as a target of the CSB protein. Supportive of the RNA-seq results, CSB directly binds to NDN and manipulates the remodeling of active histone marks and DNA 5mC methylation on the regulatory elements of the NDN gene. Intriguingly, hyperactivation of NDN due to CSB deficiency does not interfere with nucleotide excision repair (1), but greatly affects neuronal cell differentiation. Inhibition of NDN can partially rescue the motor neuron defects in CSB mouse models. In addition to shedding light on cellular mechanisms underlying CS and pointing to future avenues for intervention, these data substantiate a reciprocal communication between CSB and NDN in the context of general transcription regulation.
Collapse
Affiliation(s)
- Fangkeng Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bijuan Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yingying Xu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Junwei Gong
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shaohui Zheng
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yunlong Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuming Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|