1
|
Huang P, Wolde T, Bhardwaj V, Zhang X, Pandey V. TFF3 and PVRL2 co-targeting identified by multi-omics approach as an effective cancer immunosuppression strategy. Life Sci 2024; 357:123113. [PMID: 39369842 DOI: 10.1016/j.lfs.2024.123113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND The immunosuppressive tumour microenvironment (TME) plays a critical role in cancer progression and relapse by significantly influencing cancer pathogenesis through autocrine and paracrine signalling. Trefoil factor 3 (TFF3), a secreted protein, has been implicated in modulating the TME to promote cancer advancement. Herein, we investigated the potential association between TFF3 and key immunosuppressive TME components to distinguish a co-targetable oncotherapeutic strategy. METHODS The TFF3-PVRL2 association were identified and investigated by integrating multiple bioinformatic-tools. The virtual compound screening for PVRL2 inhibitors was done with EasyVS. The TFF3-PVRL2 protein-level correlation was validated by immunoblotting, and the effectiveness of co-inhibiting TFF3 and PVRL2 was assessed using siRNA and AMPC (a TFF3 inhibitor). RESULTS Analysis of the TISIDB database revealed a positive correlation between TFF3 and PVRL2 mRNA levels across multiple cancer types. This correlation was confirmed at the protein level through immunoblot analysis. Further evaluation using TCGA pan-cancer datasets demonstrated that TFF3 and PVRL2 interact to establish an immunosuppressive TME, promoting cancer progression in BRCA, LUAD, PAAD, PRAD, and STAD. Enrichment analyses of positively correlated genes, PPI network hub proteins, and ceRNA networks involving TFF3 and PVRL2, conducted using LinkedOmics, STRING, and Cytoscape, provided insights into their potential co-functions in cancer. A cell-based assay was performed to evaluate the combined therapeutic efficacy of targeting both, TFF3 and PVRL2 and virtual screening identified potential drugs for inhibiting PVRL2. CONCLUSION PVRL2 has emerged as a promising immunoinhibitory target with significant associations with TFF3 and represents a key co-targetable molecule for effective oncotherapeutic strategies.
Collapse
Affiliation(s)
- Peng Huang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Tesfaye Wolde
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Vipul Bhardwaj
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, China.
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
2
|
Tan YQ, Sun B, Zhang X, Zhang S, Guo H, Basappa B, Zhu T, Sethi G, Lobie PE, Pandey V. Concurrent inhibition of pBADS99 synergistically improves MEK inhibitor efficacy in KRAS G12D-mutant pancreatic ductal adenocarcinoma. Cell Death Dis 2024; 15:173. [PMID: 38409090 PMCID: PMC10897366 DOI: 10.1038/s41419-024-06551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
Therapeutic targeting of KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) has remained a significant challenge in clinical oncology. Direct targeting of KRAS has proven difficult, and inhibition of the KRAS effectors have shown limited success due to compensatory activation of survival pathways. Being a core downstream effector of the KRAS-driven p44/42 MAPK and PI3K/AKT pathways governing intrinsic apoptosis, BAD phosphorylation emerges as a promising therapeutic target. Herein, a positive association of the pBADS99/BAD ratio with higher disease stage and worse overall survival of PDAC was observed. Homology-directed repair of BAD to BADS99A or small molecule inhibition of BADS99 phosphorylation by NCK significantly reduced PDAC cell viability by promoting cell cycle arrest and apoptosis. NCK also abrogated the growth of preformed colonies of PDAC cells in 3D culture. Furthermore, high-throughput screening with an oncology drug library to identify potential combinations revealed a strong synergistic effect between NCK and MEK inhibitors in PDAC cells harboring either wild-type or mutant-KRAS. Mechanistically, both mutant-KRAS and MEK inhibition increased the phosphorylation of BADS99 in PDAC cells, an effect abrogated by NCK. Combined pBADS99-MEK inhibition demonstrated strong synergy in reducing cell viability, enhancing apoptosis, and achieving xenograft stasis in KRAS-mutant PDAC. In conclusion, the inhibition of BADS99 phosphorylation enhances the efficacy of MEK inhibition, and their combined inhibition represents a mechanistically based and potentially effective therapeutic strategy for the treatment of KRAS-mutant PDAC.
Collapse
Affiliation(s)
- Yan Qin Tan
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, 519087, Guangdong, People's Republic of China
| | - Bowen Sun
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Xi Zhang
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Shuwei Zhang
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Hui Guo
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, 570006, Mysore, India
| | - Tao Zhu
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
- Hefei National Laboratory for Physical Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Peter E Lobie
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China.
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
3
|
Tan YQ, Chiou YS, Guo H, Zhang S, Huang X, Dukanya D, Kumar AM, Basappa S, Liu S, Zhu T, Basappa B, Pandey V, Lobie PE. Vertical pathway inhibition of receptor tyrosine kinases and BAD with synergistic efficacy in triple negative breast cancer. NPJ Precis Oncol 2024; 8:8. [PMID: 38200104 PMCID: PMC10781691 DOI: 10.1038/s41698-023-00489-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Aberrant activation of the PI3K/AKT signaling axis along with the sustained phosphorylation of downstream BAD is associated with a poor outcome of TNBC. Herein, the phosphorylated to non-phosphorylated ratio of BAD, an effector of PI3K/AKT promoting cell survival, was observed to be correlated with worse clinicopathologic indicators of outcome, including higher grade, higher proliferative index and lymph node metastasis. The structural optimization of a previously reported inhibitor of BAD-Ser99 phosphorylation was therefore achieved to generate a small molecule inhibiting the phosphorylation of BAD at Ser99 with enhanced potency and improved oral bioavailability. The molecule 2-((4-(2,3-dichlorophenyl)piperazin-1-yl)(pyridin-3-yl)methyl) phenol (NCK) displayed no toxicity at supra-therapeutic doses and was therefore assessed for utility in TNBC. NCK promoted apoptosis and G0/G1 cell cycle arrest of TNBC cell lines in vitro, concordant with gene expression analyses, and reduced in vivo xenograft growth and metastatic burden, demonstrating efficacy as a single agent. Additionally, combinatorial oncology compound library screening demonstrated that NCK synergized with tyrosine kinase inhibitors (TKIs), specifically OSI-930 or Crizotinib in reducing cell viability and promoting apoptosis of TNBC cells. The synergistic effects of NCK and TKIs were also observed in vivo with complete regression of a percentage of TNBC cell line derived xenografts and prevention of metastatic spread. In patient-derived TNBC xenograft models, NCK prolonged survival times of host animals, and in combination with TKIs generated superior survival outcomes to single agent treatment. Hence, this study provides proof of concept to further develop rational and mechanistic based therapeutic strategies to ameliorate the outcome of TNBC.
Collapse
Grants
- This research was supported by the National Natural Science Foundation of China (82172618 to P.E.L. and 82102768 to Y.Q.T.), China; the Shenzhen Key Laboratory of Innovative Oncotherapeutics (ZDSYS20200820165400003 to P.E.L.) (Shenzhen Science and Technology Innovation Commission), China; Shenzhen Development and Reform Commission Subject Construction Project ([2017]1434 to P.E.L.), China; Universities Stable Funding Key Projects (WDZC20200821150704001 to P.E.L.), China; Guangdong Basic and Applied Basic Research Foundation (2020A1515111064 to Y.Q.T.), China; The Shenzhen Bay Laboratory, Oncotherapeutics (21310031 to P.E.L.), China; Overseas Research Cooperation Project (HW2020008 to V.P.) (Tsinghua Shenzhen International Graduate School), China; Research Fund, Kaohsiung Medical University (KMU-Q112002 to Y.C.), Taiwan and China Postdoctoral Science Foundation (2022M721894 to X.H.), China.
Collapse
Affiliation(s)
- Yan Qin Tan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Yi-Shiou Chiou
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, People's Republic of China
- Master Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Hui Guo
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Shuwei Zhang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Xiaoming Huang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, People's Republic of China
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Dukanya Dukanya
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, 570006, Mysore, India
| | - Arun M Kumar
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, 570006, Mysore, India
| | - Shreeja Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, 570006, Mysore, India
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Tao Zhu
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Hefei National Laboratory for Physical Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, 570006, Mysore, India.
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, People's Republic of China.
| | - Peter E Lobie
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, People's Republic of China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Guo H, Tan YQ, Huang X, Zhang S, Basappa B, Zhu T, Pandey V, Lobie PE. Small molecule inhibition of TFF3 overcomes tamoxifen resistance and enhances taxane efficacy in ER+ mammary carcinoma. Cancer Lett 2023; 579:216443. [PMID: 37858772 DOI: 10.1016/j.canlet.2023.216443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Even though tamoxifen has significantly improved the survival of estrogen receptor positive (ER+) mammary carcinoma (MC) patients, the development of drug resistance with consequent disease recurrence has limited its therapeutic efficacy. Trefoil factor-3 (TFF3) has been previously reported to mediate anti-estrogen resistance in ER+MC. Herein, the efficacy of a small molecule inhibitor of TFF3 (AMPC) in enhancing sensitivity and mitigating acquired resistance to tamoxifen in ER+MC cells was investigated. AMPC induced apoptosis of tamoxifen-sensitive and resistant ER+MC cells and significantly reduced cell survival in 2D and 3D culture in vitro. In addition, AMPC reduced cancer stem cell (CSC)-like behavior in ER+MC cells in a BCL2-dependent manner. Synergistic effects of AMPC and tamoxifen were demonstrated in ER+MC cells and AMPC was observed to improve tamoxifen efficacy in tamoxifen-sensitive cells and to re-sensitize cells to tamoxifen in tamoxifen-resistant ER+MC in vitro and in vivo. Additionally, tamoxifen-resistant ER+MC cells were concomitantly resistant to anthracycline, platinum and fluoropyrimidine drugs, but not to Taxanes. Taxane treatment of tamoxifen-sensitive and resistant ER+MC cells increased TFF3 expression indicating a combination vulnerability for tamoxifen-resistant ER+MC cells. Taxanes increased CSC-like behavior of tamoxifen-sensitive and resistant ER+MC cells which was reduced by AMPC treatment. Taxanes synergized with AMPC to promote apoptosis and reduce CSC-like behavior in vitro and in vivo. Hence, AMPC restored the sensitivity of tamoxifen and enhanced the efficacy of Taxanes in tamoxifen-resistant ER+MC. In conclusion, pharmacological inhibition of TFF3 may serve as an effective combinatorial therapeutic strategy for the treatment of tamoxifen-resistant ER+MC.
Collapse
Affiliation(s)
- Hui Guo
- Tsinghua Berkeley Shenzhen Institute and the Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yan Qin Tan
- Tsinghua Berkeley Shenzhen Institute and the Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiaoming Huang
- Tsinghua Berkeley Shenzhen Institute and the Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Shuwei Zhang
- Tsinghua Berkeley Shenzhen Institute and the Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, 570006, India
| | - Tao Zhu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute and the Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Peter E Lobie
- Tsinghua Berkeley Shenzhen Institute and the Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
5
|
Kamianowska M, Rybi-Szumińska A, Kamianowska A, Maciejczyk M, Sołomianko K, Koput A, Wasilewska A. The Urinary Concentration of Trefoil Factor 3 (TFF3) in the Term and Preterm Neonates. J Clin Med 2023; 12:4936. [PMID: 37568337 PMCID: PMC10419516 DOI: 10.3390/jcm12154936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Distinguishing between a pathologic state and renal development is important in neonatology. Because the assessment of serum creatinine in neonates is not reliable, better biomarkers are needed. Trefoil factor 3 (TFF3) is proposed as a biomarker of kidney injury. The study aimed to assess its urinary concentration in healthy term and stable preterm neonates. MATERIAL AND METHODS The study included 80 term and 20 preterm neonates born in the Department of Perinatology of the University Clinical Hospital in Bialystok. Urine was obtained from the term neonates on the 1st day of life and from the preterm neonates on the 1st, 8th, 15th and 22nd day of life. The urinary concentration of TFF3 was determined using a commercially available immunoassay and was normalized for the urinary creatinine concentration (cr.). RESULTS The values of TFF3/cr. were higher in the preterm than in the term neonates (p < 0.05) (median (Q1-Q3): 1486.85 (614.92-3559.18) and 317.29 (68.07-671.40) ng/mg cr.). They did not differ in the subsequent days of the preterm neonates' lives. The ROC curve for TFF3/cr. in the preterm and term neonates showed AUC = 0.751 (cut-off value = 1684.25 ng/mg cr.). CONCLUSIONS Prematurity is associated with higher urinary excretion of TFF3. Male gender is associated with an increased urinary TFF3 excretion in term neonates.
Collapse
Affiliation(s)
- Monika Kamianowska
- Department of Neonatology and Neonatal Intensive Care, Medical University of Bialystok, M. C. Sklodowskiej 24a Street, 15-276 Białystok, Poland;
| | - Agnieszka Rybi-Szumińska
- Department of Pediatrics and Nephrology, Medical University of Bialystok, 15-269 Bialystok, Poland (A.K.)
| | - Aleksandra Kamianowska
- Department of Pediatrics and Nephrology, Medical University of Bialystok, 15-269 Bialystok, Poland (A.K.)
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomic, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Katarzyna Sołomianko
- Department of Neonatology and Neonatal Intensive Care, Medical University of Bialystok, M. C. Sklodowskiej 24a Street, 15-276 Białystok, Poland;
| | - Alicja Koput
- Department of Pediatric Laboratory Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Anna Wasilewska
- Department of Pediatrics and Nephrology, Medical University of Bialystok, 15-269 Bialystok, Poland (A.K.)
| |
Collapse
|
6
|
Zhang J, Song J, Tang S, Zhao Y, Wang L, Luo Y, Tang J, Ji Y, Wang X, Li T, Zhang H, Shao W, Sheng J, Liang T, Bai X. Multi-omics analysis reveals the chemoresistance mechanism of proliferating tissue-resident macrophages in PDAC via metabolic adaptation. Cell Rep 2023; 42:112620. [PMID: 37285267 DOI: 10.1016/j.celrep.2023.112620] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/16/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer that typically demonstrates resistance to chemotherapy. Tumor-associated macrophages (TAMs) are essential in tumor microenvironment (TME) regulation, including promoting chemoresistance. However, the specific TAM subset and mechanisms behind this promotion remain unclear. We employ multi-omics strategies, including single-cell RNA sequencing (scRNA-seq), transcriptomics, multicolor immunohistochemistry (mIHC), flow cytometry, and metabolomics, to analyze chemotherapy-treated samples from both humans and mice. We identify four major TAM subsets within PDAC, among which proliferating resident macrophages (proliferating rMφs) are strongly associated with poor clinical outcomes. These macrophages are able to survive chemotherapy by producing more deoxycytidine (dC) and fewer dC kinases (dCKs) to decrease the absorption of gemcitabine. Moreover, proliferating rMφs promote fibrosis and immunosuppression in PDAC. Eliminating them in the transgenic mouse model alleviates fibrosis and immunosuppression, thereby re-sensitizing PDAC to chemotherapy. Consequently, targeting proliferating rMφs may become a potential treatment strategy for PDAC to enhance chemotherapy.
Collapse
Affiliation(s)
- Junlei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Jinyuan Song
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Shima Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Yaxing Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Lin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Yandong Luo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Jianghui Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Yongtao Ji
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Xun Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Taohong Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Hui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Wei Shao
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210000, China.
| | - Jianpeng Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China.
| |
Collapse
|
7
|
Kung H, Yu J. Targeted therapy for pancreatic ductal adenocarcinoma: Mechanisms and clinical study. MedComm (Beijing) 2023; 4:e216. [PMID: 36814688 PMCID: PMC9939368 DOI: 10.1002/mco2.216] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 02/21/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal malignancy with a high rate of recurrence and a dismal 5-year survival rate. Contributing to the poor prognosis of PDAC is the lack of early detection, a complex network of signaling pathways and molecular mechanisms, a dense and desmoplastic stroma, and an immunosuppressive tumor microenvironment. A recent shift toward a neoadjuvant approach to treating PDAC has been sparked by the numerous benefits neoadjuvant therapy (NAT) has to offer compared with upfront surgery. However, certain aspects of NAT against PDAC, including the optimal regimen, the use of radiotherapy, and the selection of patients that would benefit from NAT, have yet to be fully elucidated. This review describes the major signaling pathways and molecular mechanisms involved in PDAC initiation and progression in addition to the immunosuppressive tumor microenvironment of PDAC. We then review current guidelines, ongoing research, and future research directions on the use of NAT based on randomized clinical trials and other studies. Finally, the current use of and research regarding targeted therapy for PDAC are examined. This review bridges the molecular understanding of PDAC with its clinical significance, development of novel therapies, and shifting directions in treatment paradigm.
Collapse
Affiliation(s)
- Heng‐Chung Kung
- Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jun Yu
- Departments of Medicine and OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
8
|
Lin Z, Wan X, Zhang T, Huo H, Zhang X, Li K, Bei W, Guo J, Yang Y. Trefoil factor 3: New highlights in chronic kidney disease research. Cell Signal 2022; 100:110470. [PMID: 36122885 DOI: 10.1016/j.cellsig.2022.110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
Trefoil factor 3 (TFF3, also known as intestinal trefoil factor) is a small-molecule peptide containing a typical trefoil structure. TFF3 has several biological effects, such as wound healing, immune regulation, neuroprotection, and cell migration and proliferation promotion. Although TFF3 binding sites were identified in rat kidneys more than a decade ago, the specific effects of this small-molecule peptide on kidneys remain unclear. Until recently, much of the research on TFF3 in the kidney field has focused exclusively on its role as a biomarker. Notably, a large prospective randomized study of patients with 29 common clinical diseases revealed that chronic kidney disease (CKD) was associated with the highest serum TFF3 levels, which were 3-fold higher than in acute gastroenteritis, which had the second-highest levels. Examination of each stage of CKD revealed that urine and serum TFF3 levels significantly increased with the progression of CKD. These results suggest that the role of TFF3 in CKD needs further research. The present review summarizes the renal physiological expression, biological functions, and downstream signaling of TFF3, as well as the upstream events that lead to high expression of TFF3 in CKD.
Collapse
Affiliation(s)
- Ziyang Lin
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Xiaofen Wan
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Tao Zhang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Hongyan Huo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Xiaoyu Zhang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Kunping Li
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Weijian Bei
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Yiqi Yang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China.
| |
Collapse
|
9
|
Pandey V, Zhang X, Poh HM, Wang B, Dukanya D, Ma L, Yin Z, Bender A, Periyasamy G, Zhu T, Rangappa KS, Basappa B, Lobie PE. Monomerization of Homodimeric Trefoil Factor 3 (TFF3) by an Aminonitrile Compound Inhibits TFF3-Dependent Cancer Cell Survival. ACS Pharmacol Transl Sci 2022; 5:761-773. [PMID: 36110371 PMCID: PMC9469493 DOI: 10.1021/acsptsci.2c00044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/28/2022]
Abstract
Trefoil factor 3 (TFF3) is a secreted protein with an established oncogenic function and a highly significant association with clinical progression of various human malignancies. Herein, a novel small molecule that specifically targets TFF3 homodimeric functions was identified. Utilizing the concept of reversible covalent interaction, 2-amino-4-(4-(6-fluoro-5-methylpyridin-3-yl)phenyl)-5-oxo-4H,5H-pyrano[3,2-c]chromene-3-carbonitrile (AMPC) was identified as a molecule that interacted with TFF3. AMPC monomerized the cellular and secreted TFF3 homodimer at the cysteine (Cys)57-Cys57 residue with subsequent more rapid degradation of the generated TFF3 monomers. Hence, AMPC treatment also resulted in cellular depletion of TFF3 with consequent decreased cell viability in various human carcinoma-derived TFF3 expressing cell lines, including estrogen receptor positive (ER+) mammary carcinoma (MC). AMPC treatment of TFF3 expressing ER+ MC cells significantly suppressed total cell number in a dose-dependent manner. Consistently, exposure of TFF3 expressing ER+ MC cells to AMPC decreased soft agar colony formation, foci formation, and growth in suspension culture and inhibited growth of preformed colonies in 3D Matrigel. AMPC increased apoptosis in TFF3 expressing ER+ MC cells associated with decreased activity of EGFR, p38, STAT3, AKT, and ERK, decreased protein levels of CCND1, CCNE1, BCL2, and BCL-XL, and increased protein levels of TP53, CDKN1A, CASP7, and CASP9. siRNA-mediated depletion of TFF3 expression in ER+ MC cells efficiently abrogated AMPC-stimulated loss of cell viability and CASPASE 3/7 activities. Furthermore, in mice bearing ER+ MC cell-generated xenografts, AMPC treatment significantly impeded xenograft growth. Hence, AMPC exemplifies a novel mechanism by which small molecule drugs may inhibit a dimeric oncogenic protein and provides a strategy to impede TFF3-dependent cancer progression.
Collapse
Affiliation(s)
- Vijay Pandey
- Tsinghua
Berkeley Shenzhen Institute and Institute of Biopharmaceutical and
Health Engineering, Tsinghua Shenzhen International
Graduate School, Shenzhen 518055, PR China
| | - Xi Zhang
- Shenzhen
Bay Laboratory, Shenzhen 518055, PR China
| | - Han-Ming Poh
- Cancer Science
Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore 117599
| | - Baocheng Wang
- Tsinghua
Berkeley Shenzhen Institute and Institute of Biopharmaceutical and
Health Engineering, Tsinghua Shenzhen International
Graduate School, Shenzhen 518055, PR China
| | - Dukanya Dukanya
- Laboratory
of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006 Karnataka, India
| | - Lan Ma
- Tsinghua
Berkeley Shenzhen Institute and Institute of Biopharmaceutical and
Health Engineering, Tsinghua Shenzhen International
Graduate School, Shenzhen 518055, PR China
- Shenzhen
Bay Laboratory, Shenzhen 518055, PR China
| | - Zhinan Yin
- Biomedical
Translational Research Institute, Jinan
University, 601 Huangpu Avenue West, Guangzhou 510632, PR China
- Zhuhai Institute
of Translational Medicine Zhuhai People’s Hospital Affiliated
with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China
| | - Andreas Bender
- Centre for
Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Ganga Periyasamy
- DOS in Chemistry, Bangalore University, JB Campus, Bangalore 560001, India
| | - Tao Zhu
- Department
of Oncology of the First Affiliated Hospital, Division of Life Sciences
and Medicine, University of Science and
Technology of China, Hefei, Anhui 230027, China
- Hefei National
Laboratory for Physical Sciences, the CAS Key Laboratory of Innate
Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Kanchugarakoppal S. Rangappa
- Laboratory
of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006 Karnataka, India
| | - Basappa Basappa
- Laboratory
of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006 Karnataka, India
| | - Peter E. Lobie
- Tsinghua
Berkeley Shenzhen Institute and Institute of Biopharmaceutical and
Health Engineering, Tsinghua Shenzhen International
Graduate School, Shenzhen 518055, PR China
- Shenzhen
Bay Laboratory, Shenzhen 518055, PR China
- Cancer Science
Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore 117599
| |
Collapse
|