1
|
Wang Y, Song J, Zheng S, Wang S. Advancements in understanding the molecular mechanisms and clinical implications of Von Hippel-Lindau syndrome: A comprehensive review. Transl Oncol 2025; 51:102193. [PMID: 39571489 PMCID: PMC11617254 DOI: 10.1016/j.tranon.2024.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/06/2024] [Accepted: 10/30/2024] [Indexed: 12/08/2024] Open
Abstract
Von Hippel-Lindau Syndrome (VHL) is a rare genetic disorder characterized by tumors in multiple organs, including the kidneys, pancreas, and central nervous system. This comprehensive review discusses the genetic basis and clinical manifestations of VHL, as well as recent advancements in understanding the molecular mechanisms that lead to tumor formation. The authors highlight the role of hypoxia-inducible factors and the ubiquitin-proteasome system in VHL-associated cancer development .The review also discusses the potential clinical implications of these findings, such as the development of targeted therapies for VHL-associated cancers. However, the authors note the challenges associated with developing effective treatments for this complex disease, including limited patient availability for clinical trials due to its rarity .Overall, this review provides valuable insights into our current understanding of VHL and offers important avenues for future research aimed at improving the diagnosis, treatment, and management of VHL patients. By illuminating the molecular underpinnings of VHL-associated cancers, this work may ultimately help to develop more effective treatments and improve outcomes for patients with this challenging disease.
Collapse
Affiliation(s)
- Yaochun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China
| | - Jingzhuo Song
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China
| | - Shuxing Zheng
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China
| | - Shuhong Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China.
| |
Collapse
|
2
|
Pauzaite T, Nathan JA. A closer look at the role of deubiquitinating enzymes in the Hypoxia Inducible Factor pathway. Biochem Soc Trans 2024; 52:2253-2265. [PMID: 39584532 DOI: 10.1042/bst20230861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024]
Abstract
Hypoxia Inducible transcription Factors (HIFs) are central to the metazoan oxygen-sensing response. Under low oxygen conditions (hypoxia), HIFs are stabilised and govern an adaptive transcriptional programme to cope with prolonged oxygen starvation. However, when oxygen is present, HIFs are continuously degraded by the proteasome in a process involving prolyl hydroxylation and subsequent ubiquitination by the Von Hippel Lindau (VHL) E3 ligase. The essential nature of VHL in the HIF response is well established but the role of other enzymes involved in ubiquitination is less clear. Deubiquitinating enzymes (DUBs) counteract ubiquitination and provide an important regulatory aspect to many signalling pathways involving ubiquitination. In this review, we look at the complex network of ubiquitination and deubiquitination in controlling HIF signalling in normal and low oxygen tensions. We discuss the relative importance of DUBs in opposing VHL, and explore roles of DUBs more broadly in hypoxia, in both VHL and HIF independent contexts. We also consider the catalytic and non-catalytic roles of DUBs, and elaborate on the potential benefits and challenges of inhibiting these enzymes for therapeutic use.
Collapse
Affiliation(s)
- Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah, Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, U.K
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah, Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, U.K
| |
Collapse
|
3
|
Wang Z, Zhu C, Sun X, Deng H, Liu W, Jia S, Bai Y, Xiao W, Liu X. Spring viremia of carp virus infection induces hypoxia response in zebrafish by stabilizing hif1α. J Virol 2024:e0149124. [PMID: 39601573 DOI: 10.1128/jvi.01491-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
The hypoxia signaling pathway controls hypoxia adaptation and tolerance of organisms, which is regulated by multiple mechanisms. Viral infection elicits various pathophysiological responses in the host. However, whether viral infection can affect the hypoxia response is not yet fully understood. In this study, we found that Spring viremia of carp virus (SVCV) infection in zebrafish caused symptoms similar to those in zebrafish under hypoxic conditions. Further assays indicated that SVCV infection activated the hypoxia signaling pathway in zebrafish. In addition, SVCV infection caused increased glycolysis and reactive oxygen species (ROS) levels in cells. Mechanistically, SVCV-G protein interacted with hif1α-a/b and attenuated their K48-linked polyubiquitination, leading to their stabilization and subsequent enhancement of target gene expression. Moreover, treatment with the HIF1α-specific inhibitor PX478 enhanced the antiviral ability against SVCV infection in zebrafish and zebrafish cells. This study reveals a relationship between SVCV infection and the hypoxia signaling pathway in fish and provides a strategy for reducing the damage of viral disease in the aquaculture industry. IMPORTANCE Viral infection triggers various pathophysiological responses in the host. The hypoxia signaling pathway controls hypoxia adaptation and tolerance of organisms. However, whether viral infection can affect the hypoxia response is not yet fully understood. This study showed that Spring viremia of carp virus (SVCV) infection activated the hypoxia signaling pathway and induced a hypoxia response. The SVCV-G protein interacted with hif1α-a/b and reduced their K48-linked polyubiquitination, leading to their stabilization and subsequent enhancement of target gene expression. Additionally, treatment with the HIF1α-specific inhibitor PX478 enhanced the antiviral ability against SVCV infection in zebrafish and zebrafish cells. Our findings not only reveal a relationship between SVCV infection and the hypoxia signaling pathway in fish but also provide a strategy for reducing the damage of viral disease in the aquaculture industry.
Collapse
Affiliation(s)
- Zixuan Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chunchun Zhu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xueyi Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hongyan Deng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Life Science, Wuhan University, Wuhan, China
| | - Wen Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Shuke Jia
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yao Bai
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Wuhan Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
- College of Life Science, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xing Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
- College of Life Science, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Pauzaite T, Wit N, Seear RV, Nathan JA. Deubiquitinating enzyme mutagenesis screens identify a USP43-dependent HIF-1 transcriptional response. EMBO J 2024; 43:3677-3709. [PMID: 39009674 PMCID: PMC11377827 DOI: 10.1038/s44318-024-00166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/13/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
The ubiquitination and proteasome-mediated degradation of Hypoxia Inducible Factors (HIFs) is central to metazoan oxygen-sensing, but the involvement of deubiquitinating enzymes (DUBs) in HIF signalling is less clear. Here, using a bespoke DUBs sgRNA library we conduct CRISPR/Cas9 mutagenesis screens to determine how DUBs are involved in HIF signalling. Alongside defining DUBs involved in HIF activation or suppression, we identify USP43 as a DUB required for efficient activation of a HIF response. USP43 is hypoxia regulated and selectively associates with the HIF-1α isoform, and while USP43 does not alter HIF-1α stability, it facilitates HIF-1 nuclear accumulation and binding to its target genes. Mechanistically, USP43 associates with 14-3-3 proteins in a hypoxia and phosphorylation dependent manner to increase the nuclear pool of HIF-1. Together, our results highlight the multifunctionality of DUBs, illustrating that they can provide important signalling functions alongside their catalytic roles.
Collapse
Affiliation(s)
- Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - Niek Wit
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - Rachel V Seear
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom.
| |
Collapse
|
5
|
Yang M, Wei Y, He X, Xia C. The deubiquitinating protein OTUD6B promotes lung adenocarcinoma progression by stabilizing RIPK1. Biol Direct 2024; 19:46. [PMID: 38880876 PMCID: PMC11181667 DOI: 10.1186/s13062-024-00489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND There is growing evidence indicating that deubiquitinating enzymes may contribute to tumor progression and can serve as promising therapeutic targets. METHODS The overexpression of deubiquitinase OTUD6B in lung adenocarcinoma (LUAD) and its adjacent tissues was analyzed by immunohistochemistry and TCGA/GO database. Survival analysis further supported OTUD6B as a potential target for LUAD treatment. We assessed the effect of OTUD6B on LUAD cell growth using cell viability assays and conducted TUNEL staining, migration, and invasion experiments to investigate the impact of OTUD6B on the apoptosis and metastasis of LUAD cells. Additionally, we established a transplanted tumor model in nude mice to validate our findings in vivo. Finally, using IP mass spectrometry and co-IP experiments, we screened and confirmed the influence of RIPK1 as a substrate of OTUD6B in LUAD. RESULTS OTUD6B is highly overexpressed in human LUAD and predicts poor prognosis in LUAD patients. OTUD6B knockdown inhibited the proliferation of LUAD cells and enhanced apoptosis and inhibited metastasis in LUAD cells suppressed. A549 xenografts revealed that OTUD6B deletion can slow down tumour growth. Additionally, OTUD6B can bind to RIPK1, reduce its ubiquitination level and increase its protein stability. CONCLUSIONS Our results suggest that OTUD6B is a promising clinical target for LUAD treatment and that targeting OTUD6B may constitute an effective anti-LUAD strategy.
Collapse
Affiliation(s)
- Miaomiao Yang
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, 450053, Henan, China.
| | - Yujie Wei
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xin He
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Zhengzhou University, No.3 Kangfuqian Street, Erqi District, Zhengzhou, China
| | - Changwei Xia
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital and Central China Branch of National Center Fuwai Cardiovascular Diseases, Zhengzhou, China.
| |
Collapse
|
6
|
Lee SG, Woo SM, Seo SU, Lee HS, Kim SH, Chang YC, Cho HJ, Yook S, Nam JO, Kwon TK. Non-canonical deubiquitination of OTUB1 induces IFNγ-mediated cell cycle arrest via regulation of p27 stability. Oncogene 2024; 43:1852-1860. [PMID: 38664499 PMCID: PMC11164677 DOI: 10.1038/s41388-024-03042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 06/12/2024]
Abstract
The deubiquitinase OTUB1, implicated as a potential oncogene in various tumors, lacks clarity in its regulatory mechanism in tumor progression. Our study investigated the effects and underlying mechanisms of OTUB1 on the breast cancer cell cycle and proliferation in IFNγ stimulation. Loss of OTUB1 abrogated IFNγ-induced cell cycle arrest by regulating p27 protein expression, whereas OTUB1 overexpression significantly enhanced p27 expression even without IFNγ treatment. Tyr26 phosphorylation residue of OTUB1 directly bound to p27, modulating its post-translational expression. Furthermore, we identified crucial lysine residues (K134, K153, and K163) for p27 ubiquitination. Src downregulation reduced OTUB1 and p27 expression, suggesting that IFNγ-induced cell cycle arrest is mediated by the Src-OTUB1-p27 signaling pathway. Our findings highlight the pivotal role of OTUB1 in IFNγ-induced p27 expression and cell cycle arrest, offering therapeutic implications.
Collapse
Affiliation(s)
- Seul Gi Lee
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, South Korea
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, 42601, South Korea
| | - Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, South Korea
| | - Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, South Korea
| | - Hyun Shik Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Sang Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, 42472, South Korea
| | - Hyo Je Cho
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, South Korea
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Ju-Ock Nam
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, South Korea.
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, 42601, South Korea.
| |
Collapse
|
7
|
Peng L, Wu T, Liu Y, Zhao D, He W, Yuan Y. OTUB1 accelerates hepatocellular carcinoma by stabilizing RACK1 via its non-canonical ubiquitination. Cell Oncol (Dordr) 2024; 47:987-1004. [PMID: 38315284 PMCID: PMC11219430 DOI: 10.1007/s13402-023-00913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Dysregulated ubiquitination modification occupies a pivotal role in hepatocellular carcinoma (HCC) tumorigenesis and progression. The ubiquitin aldehyde binding 1 (OTUB1) was aberrantly upregulated and exhibited the pro-tumorigenic function in HCC. However, the underlying mechanisms and responsible targets of OTUB1 remain unclear. METHODS First, bioinformatics analysis, western blot and immunohistochemistry staining were applied to analyze OTUB1 expression in HCC specimens. Then, immunoprecipitation assay-tandem mass spectrometry (MS) combined with the gene set enrichment analysis (GSEA) was used to explore the downstream target of OTUB1. Co-immunoprecipitation and ubiquitination assays were used to identify the mechanisms involved. Finally, we explored the regulatory effect of MAZ on OTUB1 through ChIP-qPCR and dual-luciferase reporter assay. RESULTS OTUB1 was broadly elevated in HCC tissues and promoted the proliferation and metastasis of HCC in vitro and in vivo. The receptor for activated C kinase 1 (RACK1) performed as a functional partner of OTUB1 and its hyperactivation was associated with aggressive development and other malignant features in HCC by activating oncogenes transcription. Mechanistically, OTUB1 directly bound to RACK1 at its C-terminal domain and decreased the K48-linked ubiquitination of RACK1 through its non-canonical suppression of ubiquitination activity, which stabilized RACK1 protein levels in HCC cells. Therefore, OTUB1 significantly increased multiple oncogenes expression and activated PI3K/AKT and FAK/ERK signaling in a RACK1-dependent manner in HCC. Moreover, the transcription factor MAZ upregulated OTUB1 expression through identifying a putative response element of OTUB1 promoter area. CONCLUSIONS Our findings might provide a new therapeutic strategy for HCC by modifying the MAZ-OTUB1-RACK1 axis.
Collapse
Affiliation(s)
- Liqun Peng
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Tiangen Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Yingyi Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Dongli Zhao
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Wenzhi He
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, China.
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China.
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, China.
| |
Collapse
|
8
|
Campos Alonso M, Knobeloch KP. In the moonlight: non-catalytic functions of ubiquitin and ubiquitin-like proteases. Front Mol Biosci 2024; 11:1349509. [PMID: 38455765 PMCID: PMC10919355 DOI: 10.3389/fmolb.2024.1349509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Proteases that cleave ubiquitin or ubiquitin-like proteins (UBLs) are critical players in maintaining the homeostasis of the organism. Concordantly, their dysregulation has been directly linked to various diseases, including cancer, neurodegeneration, developmental aberrations, cardiac disorders and inflammation. Given their potential as novel therapeutic targets, it is essential to fully understand their mechanisms of action. Traditionally, observed effects resulting from deficiencies in deubiquitinases (DUBs) and UBL proteases have often been attributed to the misregulation of substrate modification by ubiquitin or UBLs. Therefore, much research has focused on understanding the catalytic activities of these proteins. However, this view has overlooked the possibility that DUBs and UBL proteases might also have significant non-catalytic functions, which are more prevalent than previously believed and urgently require further investigation. Moreover, multiple examples have shown that either selective loss of only the protease activity or complete absence of these proteins can have different functional and physiological consequences. Furthermore, DUBs and UBL proteases have been shown to often contain domains or binding motifs that not only modulate their catalytic activity but can also mediate entirely different functions. This review aims to shed light on the non-catalytic, moonlighting functions of DUBs and UBL proteases, which extend beyond the hydrolysis of ubiquitin and UBL chains and are just beginning to emerge.
Collapse
Affiliation(s)
- Marta Campos Alonso
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus-Peter Knobeloch
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Wu M, Sun L, Song T. OTUB1-mediated inhibition of ubiquitination: a growing list of effectors, multiplex mechanisms, and versatile functions. Front Mol Biosci 2024; 10:1261273. [PMID: 38264570 PMCID: PMC10803509 DOI: 10.3389/fmolb.2023.1261273] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
Protein ubiquitination plays a pivotal role in protein homeostasis. Ubiquitination may regulate the stability, activity, protein-protein interaction, and localization of a protein. Ubiquitination is subject to regulation by two groups of counteracting enzymes, the E3 ubiquitin ligases and deubiquitinases. Consistently, deubiquitinases are involved in essentially all biological processes. OTUB1, an OTU-family deubiquitinase, is a critical regulator of development, cancer, DNA damage response, and immune response. OTUB1 antagonizes the ubiquitination of a wide-spectrum of proteins through at least two different mechanisms. Besides direct deubiquitination, OTUB1 can also inhibit ubiquitination by non-canonically blocking ubiquitin transfer from certain ubiquitin-conjugases (E2). In this review, we start with a general background of protein ubiquitination and deubiquitination. Next, we introduce the basic characteristics of OTUB1 and then elaborate on the updated biological functions of OTUB1. Afterwards, we discuss potential mechanisms underlying the versatility and specificity of OTUB1 functions. In the end, we discuss the perspective that OTUB1 can be a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Miaomiao Wu
- Deparment of Obstetrics and Gynecology, Shuyang Hospital of Traditional Chinese Medicine, Suqian, China
| | - Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
10
|
Sheryazdanova A, Amoedo ND, Dufour S, Impens F, Rossignol R, Sablina A. The deubiquitinase OTUB1 governs lung cancer cell fitness by modulating proteostasis of OXPHOS proteins. Biochim Biophys Acta Mol Basis Dis 2023:166767. [PMID: 37245529 DOI: 10.1016/j.bbadis.2023.166767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Aerobic glycolysis is a hallmark of cancer development, but this dogma has been challenged by reports showing a key role of oxidative phosphorylation (OXPHOS) in cancer cell survival. It has been proposed that increased levels of intramitochondrial proteins in cancer cells are associated with high OXPHOS activity and increased sensitivity to OXPHOS inhibitors. However, the molecular mechanisms leading to the high expression of OXPHOS proteins in cancer cells remain unknown. Multiple proteomics studies have detected the ubiquitination of intramitochondrial proteins, suggesting the contribution of the ubiquitin system to the proteostatic regulation of OXPHOS proteins. Here, we identified the ubiquitin hydrolase OTUB1 as a regulator of the mitochondrial metabolic machinery essential for lung cancer cell survival. Mitochondria-localized OTUB1 modulates respiration by inhibiting K48-linked ubiquitination and turnover of OXPHOS proteins. An increase in OTUB1 expression is commonly observed in one-third of non-small-cell lung carcinomas and is associated with high OXPHOS signatures. Moreover, OTUB1 expression highly correlates with the sensitivity of lung cancer cells to mitochondrial inhibitors.
Collapse
Affiliation(s)
- Aidana Sheryazdanova
- VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KULeuven, Leuven, Belgium
| | - Nivea Dias Amoedo
- INSERM U1211 Rare Diseases, Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| | - Sara Dufour
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Center for Medical Biotechnology, Ghent, Belgium; VIB Proteomics Core, Ghent, Belgium
| | - Francis Impens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Center for Medical Biotechnology, Ghent, Belgium; VIB Proteomics Core, Ghent, Belgium
| | - Rodrigue Rossignol
- INSERM U1211 Rare Diseases, Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| | - Anna Sablina
- VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KULeuven, Leuven, Belgium.
| |
Collapse
|
11
|
Deng H, Jia S, Tang J, Rong F, Xu C, Chen X, Wang Z, Zhu C, Sun X, Liao Q, Liu W, Li W, Xiao W, Liu X. SET7 methylates the deubiquitinase OTUB1 at Lys 122 to impair its binding to E2 enzyme UBC13 and relieve its suppressive role on ferroptosis. J Biol Chem 2023; 299:103054. [PMID: 36822329 PMCID: PMC10040876 DOI: 10.1016/j.jbc.2023.103054] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
The deubiquitinating enzyme OTUB1 possesses canonical deubiquitinase (DUB) activity and noncanonical, catalytic-independent activity, which has been identified as an essential regulator of diverse physiological processes. Posttranslational modifications of OTUB1 affect both its DUB activity and its noncanonical activity of binding to the E2 ubiquitin-conjugation enzyme UBC13, but further investigation is needed to characterize the full inventory of modifications to OTUB1. Here, we demonstrate that SET7, a lysine monomethylase, directly interacts with OTUB1 to catalyze OTUB1 methylation at lysine 122. This modification does not affect DUB activity of OTUB1 but impairs its noncanonical activity, binding to UBC13. Moreover, we found using cell viability analysis and intracellular reactive oxygen species assay that SET7-mediated methylation of OTUB1 relieves its suppressive role on ferroptosis. Notably, the methylation-mimic mutant of OTUB1 not only loses the ability to bind to UBC13 but also relieves its suppressive role on Tert-Butyl hydroperoxide-induced cell death and Cystine starvation/Erastin-induced cellular reactive oxygen species. Collectively, our data identify a novel modification of OTUB1 that is critical for inhibiting its noncanonical activity.
Collapse
Affiliation(s)
- Hongyan Deng
- College of Life Science, Wuhan University, Wuhan, P. R. China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Shuke Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jinhua Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Fangjing Rong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Chenxi Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaoyun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Zixuan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xueyi Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Qian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Wen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Wenhua Li
- College of Life Science, Wuhan University, Wuhan, P. R. China.
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China; Hubei Hongshan Laboratory, Wuhan, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, P. R. China.
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China; Hubei Hongshan Laboratory, Wuhan, P. R. China.
| |
Collapse
|
12
|
Zhao L, Song Y, Zhang Y, Liu H, Shen Y, Fan Y, Li Y, Xie K. HIF-1α/BNIP3L induced cognitive deficits in a mouse model of sepsis-associated encephalopathy. Front Immunol 2022; 13:1095427. [PMID: 36569834 PMCID: PMC9768421 DOI: 10.3389/fimmu.2022.1095427] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Objective Sepsis Associated Encephalopathy (SAE) is a common complication in critically ill patients and perioperative period, but its pathogenesis is still unclear. This study aimed to explore the effect of the HIF-1α (hypoxia-inducible factor-1α)/BNIP3L (Bcl-2/adenovirus E1B 19-kDa interaction protein) signaling pathway on SAE. Methods C57BL/6J male mice were divided into four groups, using a random number table method: control group, sham group, sepsis group, sepsis+HIF-1α activity inhibitor (echinomycin) group. Sepsis was induced by cecal ligation and puncture (CLP). At 24 h after surgery, brain tissue was sampled. HE was staining to observe changes in the hippocampus structure. Fluoroscopy observes changes in mitochondrial structure. Western blot, QT-PCR, and immunofluorescence were used to assess the amount of expression of HIF-1α and BNIP3L in the hippocampus and mitochondrion of hippocampus neurons. Observation of neuronal apoptosis by TUNEL staining. Seven days after surgery, mice were tested in a Morris water maze test to assess cognitive function after CLP. Results Our results show that CLP-induced hippocampus-dependent cognitive deficits were accompanied with increased HIF 1a and decreased BNIP3L, increased protein levels of TNF-α, IL-6, and IL-β, and damage to mitochondrial structures and neuronal apoptosis in the hippocampus. In addition, administration of echinomycin rescues cognitive deficits, ameliorates HIF-1α and BNIP3L-mediated neuronal pyroptosis and damaged mitochondrial structures, and decreases the expression of TNF-α and IL-6 in the hippocampus. Conclusions HIF-1α and the BNIP3L promote mitochondrial damage, and neuronal apoptosis and the expression of inflammatory factors may be the mechanism of SAE in critically ill patients and perioperative period.
Collapse
Affiliation(s)
- Lina Zhao
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu Song
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Zhang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Haiying Liu
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuehao Shen
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Fan
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yun Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China,*Correspondence: Yun Li, ; Keliang Xie,
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China,Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Research Institute of Anesthesiology, Tianjin, China,*Correspondence: Yun Li, ; Keliang Xie,
| |
Collapse
|