1
|
Kellman LN, Neela PH, Srinivasan S, Siprashvili Z, Shanderson RL, Hong AW, Rao D, Porter DF, Reynolds DL, Meyers RM, Guo MG, Yang X, Zhao Y, Wozniak GG, Donohue LKH, Shenoy R, Ko LA, Nguyen DT, Mondal S, Garcia OS, Elcavage LE, Elfaki I, Abell NS, Tao S, Lopez CM, Montgomery SB, Khavari PA. Functional analysis of cancer-associated germline risk variants. Nat Genet 2025; 57:718-728. [PMID: 39962238 DOI: 10.1038/s41588-024-02070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/20/2024] [Indexed: 03/15/2025]
Abstract
Single-nucleotide variants (SNVs) in regulatory DNA are linked to inherited cancer risk. Massively parallel reporter assays of 4,041 SNVs linked to 13 neoplasms comprising >90% of human malignancies were performed in pertinent primary human cell types and then integrated with matching chromatin accessibility, DNA looping and expression quantitative trait loci data to nominate 380 potentially regulatory SNVs and their putative target genes. The latter highlighted specific protein networks in lifetime cancer risk, including mitochondrial translation, DNA damage repair and Rho GTPase activity. A CRISPR knockout screen demonstrated that a subset of germline putative risk genes also enables the growth of established cancers. Editing one SNV, rs10411210 , showed that its risk allele increases rhophilin RHPN2 expression and stimulus-responsive RhoA activation, indicating that individual SNVs may upregulate cancer-linked pathways. These functional data are a resource for variant prioritization efforts and further interrogation of the mechanisms underlying inherited risk for cancer.
Collapse
Affiliation(s)
- Laura N Kellman
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Poornima H Neela
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Suhas Srinivasan
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zurab Siprashvili
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ronald L Shanderson
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Audrey W Hong
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Deepti Rao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Douglas F Porter
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - David L Reynolds
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Robin M Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Margaret G Guo
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xue Yang
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yang Zhao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Glenn G Wozniak
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura K H Donohue
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Rajani Shenoy
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa A Ko
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Duy T Nguyen
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Smarajit Mondal
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Omar S Garcia
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lara E Elcavage
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ibtihal Elfaki
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Nathan S Abell
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Shiying Tao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher M Lopez
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen B Montgomery
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
2
|
Ding Y, Zhou G, Hu W. Epigenetic regulation of TGF-β pathway and its role in radiation response. Int J Radiat Biol 2024; 100:834-848. [PMID: 38506660 DOI: 10.1080/09553002.2024.2327395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE Transforming growth factor (TGF-β) plays a dual role in tumor progression as well as a pivotal role in radiation response. TGF-β-related epigenetic regulations, including DNA methylation, histone modifications (including methylation, acetylation, phosphorylation, ubiquitination), chromatin remodeling and non-coding RNA regulation, have been found to affect the occurrence and development of tumors as well as their radiation response in multiple dimensions. Due to the significance of radiotherapy in tumor treatment and the essential roles of TGF-β signaling in radiation response, it is important to better understand the role of epigenetic regulation mechanisms mediated by TGF-β signaling pathways in radiation-induced targeted and non-targeted effects. CONCLUSIONS By revealing the epigenetic mechanism related to TGF-β-mediated radiation response, summarizing the existing relevant adjuvant strategies for radiotherapy based on TGF-β signaling, and discovering potential therapeutic targets, we hope to provide a new perspective for improving clinical treatment.
Collapse
Affiliation(s)
- Yunan Ding
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Ding Y, Ning Y, Kang H, Yuan Y, Lin K, Wang C, Yi Y, He J, Li L, He X, Chang Y. ZMIZ2 facilitates hepatocellular carcinoma progression via LEF1 mediated activation of Wnt/β-catenin pathway. Exp Hematol Oncol 2024; 13:5. [PMID: 38254216 PMCID: PMC10802047 DOI: 10.1186/s40164-024-00475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignancies with a high lethality rate. ZMIZ2 is a transcriptional co-activator implicated in various human diseases. However, the role and molecular mechanism of ZMIZ2 in HCC remains to be elucidated. METHODS The expression and prognostic value of ZMIZ2 in HCC was excavated from public databases and explored by bioinformatic analysis. Then the expression of ZMIZ2 and related genes was further validated by quantitative RT-PCR, western blotting, and immunohistochemistry. Loss and gain-of-function experiments were performed in vitro and in vivo to investigate the function of ZMIZ2 in HCC. In addition, transcriptome sequencing and immunoprecipitation was conducted to explore the potential molecular mechanisms of ZMIZ2. RESULTS ZMIZ2 was highly expressed in HCC and associated with poor prognosis. Silencing ZMIZ2 significantly inhibited HCC cell proliferation, cell cycle process, migration, and invasion in vitro, and also inhibited the progression of HCC in vivo. Additionally, ZMIZ2 expression was correlated with immune cell infiltration in HCC samples. Somatic mutation analysis showed that ZMIZ2 and TP53 mutations jointly affected the progression of HCC. Mechanistically, ZMIZ2 interacted with LEF1 to regulate malignant progression of HCC by activating the Wnt/β-catenin pathway. CONCLUSION ZMIZ2 was overexpressed in HCC and associated with poor prognosis. The overexpression of ZMIZ2 was corelated with malignant phenotype, and it facilitated HCC progression via LEF1-mediated activation of the Wnt/β-catenin pathway. Furthermore, ZMIZ2 could be served as a prognostic biomarker and a new therapeutic target for HCC.
Collapse
Affiliation(s)
- Yang Ding
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yumei Ning
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Kang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuan Yuan
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Kun Lin
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chun Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yun Yi
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jianghua He
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lurao Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xingxing He
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|