1
|
Sun M, Wang Q, Huang J, Sun Q, Yu Q, Liu X, Liu Z. Asiatic acid induces ferroptosis of RA-FLS via the Nrf2/HMOX1 pathway to relieve inflammation in rheumatoid arthritis. Int Immunopharmacol 2024; 137:112394. [PMID: 38852517 DOI: 10.1016/j.intimp.2024.112394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Ferroptosis is a distinct iron-dependent non-apoptotic type of programmed cell death that is implicated in the pathophysiology of rheumatoid arthritis (RA). Although asiatic acid (AA) is documented to have significant anti-inflammatory effects in various diseases, it is not known whether it can regulate RA via ferroptosis. METHODS The effects of AA on rheumatoid arthritis fibroid-like synoviocytes (RA-FLS) were assessed in vitro, and a rat model of type II collagen-induced arthritis (CIA) was established to evaluate the effectiveness of AA treatment in vivo. RESULTS AA significantly reduced both viability and colony formation in cultured RA-FLS, while increasing the levels of reactive oxygen species (ROS), ferrous iron (Fe2+), malondialdehyde (MDA), and lactate dehydrogenase (LDH), as well as the expression of COX2. Furthermore, AA induced ferroptosis in RA-FLS by promoting Fe2+ accumulation through downregulation of the expression of Keap1 and FTH1 and upregulation of Nrf2 and HMOX1. In vivo, AA treatment was found to reduce toe swelling and the arthritis score in CIA rats, as well as relieve inflammation and ankle damage and significantly upregulate the expression of Nrf2 and HMOX1 in the synovial fluid. CONCLUSION Treatment with AA significantly reduced the viability of RA-FLS and triggered ferroptosis by promoting accumulation of Fe2+via the Nrf2-HMOX1 pathway, and was effective in relieving inflammation in CIA model rats. These findings suggest that the use of AA may be a promising strategy for the clinical treatment of RA.
Collapse
Affiliation(s)
- Miao Sun
- Key Surgical Laboratory of Educational Administration of Liaoning Province, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, China; Post Graduate School of Jinzhou Medical University, Jinzhou 121001, China
| | - Qian Wang
- Key Surgical Laboratory of Educational Administration of Liaoning Province, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, China; Post Graduate School of Jinzhou Medical University, Jinzhou 121001, China
| | - Jianhua Huang
- Key Surgical Laboratory of Educational Administration of Liaoning Province, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, China.
| | - Qixuan Sun
- Key Surgical Laboratory of Educational Administration of Liaoning Province, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, China; Post Graduate School of Jinzhou Medical University, Jinzhou 121001, China
| | - Qian Yu
- Post Graduate School of Jinzhou Medical University, Jinzhou 121001, China; Huludao Central Hospital Teaching Base of Jinzhou Medical University, Jinzhou 125001, China
| | - Xin Liu
- Key Surgical Laboratory of Educational Administration of Liaoning Province, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, China; Huludao Central Hospital Teaching Base of Jinzhou Medical University, Jinzhou 125001, China.
| | - Zhining Liu
- Key Surgical Laboratory of Educational Administration of Liaoning Province, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, China; Ultrasound Department, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China.
| |
Collapse
|
2
|
Chen Y, Liu M, Lu M, Luo L, Han Z, Liu X. Exploring the impact of m 6A modification on immune diseases: mechanisms and therapeutic implication. Front Immunol 2024; 15:1387582. [PMID: 39072324 PMCID: PMC11272477 DOI: 10.3389/fimmu.2024.1387582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
N6-methyladenosine (m6A) is a chemical modification of RNA and has become a widely discussed topic among scientific researchers in recent years. It is distributed in various organisms, including eukaryotes and bacteria. It has been found that m6A is composed of writers, erasers and readers and is involved in biological functions such as splicing, transport and translation of RNA. The balance of the human immune microenvironment is important for human health abnormalities. Increasing studies have found that m6A affects the development of immune diseases such as inflammatory enteritis and systemic lupus erythematosus (SLE) by participating in the homeostatic regulation of the immune microenvironment in vivo. In this manuscript, we introduce the composition, biological function, regulation of m6A in the immune microenvironment and its progression in various immune diseases, providing new targets and directions for the treatment of immune diseases in clinical practice.
Collapse
Affiliation(s)
- Yutong Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Liu
- Department of Traditional Chinese Medicine, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, China
| | - Miao Lu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linling Luo
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xide Liu
- Department of Traditional Chinese Medicine, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Bakinowska E, Bratborska AW, Kiełbowski K, Ćmil M, Biniek WJ, Pawlik A. The Role of Mesenchymal Stromal Cells in the Treatment of Rheumatoid Arthritis. Cells 2024; 13:915. [PMID: 38891047 PMCID: PMC11171813 DOI: 10.3390/cells13110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease characterised by the formation of a hyperplastic pannus, as well as cartilage and bone damage. The pathogenesis of RA is complex and involves broad interactions between various cells present in the inflamed synovium, including fibroblast-like synoviocytes (FLSs), macrophages, and T cells, among others. Under inflammatory conditions, these cells are activated, further enhancing inflammatory responses and angiogenesis and promoting bone and cartilage degradation. Novel treatment methods for RA are greatly needed, and mesenchymal stromal cells (MSCs) have been suggested as a promising new regenerative and immunomodulatory treatment. In this paper, we present the interactions between MSCs and RA-FLSs, and macrophages and T cells, and summarise studies examining the use of MSCs in preclinical and clinical RA studies.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| | | | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| | - Maciej Ćmil
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| | - Wojciech Jerzy Biniek
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| |
Collapse
|
4
|
Kawabata S, Nakasa T, Nekomoto A, Yimiti D, Miyaki S, Adachi N. Osteophyte Cartilage as a Potential Source for Minced Cartilage Implantation: A Novel Approach for Articular Cartilage Repair in Osteoarthritis. Int J Mol Sci 2024; 25:5563. [PMID: 38791601 PMCID: PMC11122408 DOI: 10.3390/ijms25105563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
Osteoarthritis (OA) is a common joint disorder characterized by cartilage degeneration, often leading to pain and functional impairment. Minced cartilage implantation (MCI) has emerged as a promising one-step alternative for large cartilage defects. However, the source of chondrocytes for MCI remains a challenge, particularly in advanced OA, as normal cartilage is scarce. We performed in vitro studies to evaluate the feasibility of MCI using osteophyte cartilage, which is present in patients with advanced OA. Osteophyte and articular cartilage samples were obtained from 22 patients who underwent total knee arthroplasty. Chondrocyte migration and proliferation were assessed using cartilage fragment/atelocollagen composites to compare the characteristics and regenerative potential of osteophytes and articular cartilage. Histological analysis revealed differences in cartilage composition between osteophytes and articular cartilage, with higher expression of type X collagen and increased chondrocyte proliferation in the osteophyte cartilage. Gene expression analysis identified distinct gene expression profiles between osteophytes and articular cartilage; the expression levels of COL2A1, ACAN, and SOX9 were not significantly different. Chondrocytes derived from osteophyte cartilage exhibit enhanced proliferation, and glycosaminoglycan production is increased in both osteophytes and articular cartilage. Osteophyte cartilage may serve as a viable alternative source of MCI for treating large cartilage defects in OA.
Collapse
Affiliation(s)
- Shingo Kawabata
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City 734-8551, Japan; (S.K.); (A.N.); (D.Y.); (N.A.)
| | - Tomoyuki Nakasa
- Department of Artificial Joints and Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City 734-8551, Japan
| | - Akinori Nekomoto
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City 734-8551, Japan; (S.K.); (A.N.); (D.Y.); (N.A.)
| | - Dilimulati Yimiti
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City 734-8551, Japan; (S.K.); (A.N.); (D.Y.); (N.A.)
| | - Shigeru Miyaki
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima City 734-8551, Japan;
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City 734-8551, Japan; (S.K.); (A.N.); (D.Y.); (N.A.)
| |
Collapse
|
5
|
Chen X, Zhong X, Luo D, Lei Y, Huang R. Plasma SMOC2 Predicts Prognosis in Patients with Heart Failure: A Prospective Cohort. Int J Gen Med 2024; 17:1651-1664. [PMID: 38706743 PMCID: PMC11069073 DOI: 10.2147/ijgm.s445457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
Background Heart failure (HF) is a chronic disease with a poor prognosis, making it extremely important to assess the prognosis of patients with HF for accurate treatment. Secreted modular calcium-binding protein 2 (SMOC2) is a cysteine-rich acidic secreted protein that plays a pathophysiological role in many diseases, including regulation of vascular growth factor activity. It has previously been found that SMOC2 plays an essential role in cardiac fibrosis in our previous preclinical study, but whether it can be used as a clinical marker in heart failure patients remains unclear. The purpose of this research was to evaluate the correlation between plasma levels of SMOC2 and the prognosis for individuals with HF. Methods HF patients diagnosed with ischemic cardiomyopathy were enrolled from January to December 2021. Baseline plasma levels of SMOC2 were measured after demographic and clinical features were collected. Linear and nonlinear multivariate Cox regression models were used to determine the association between plasma SMOC2 and patient outcomes during follow-up. All analysis was performed using SPSS, EmpowerStats, and R software. Results The study included 188 patients, and the average follow-up time was 489.5±88.3 days. The plasma SMOC2 concentrations were positively correlated with N-terminal pro-B-type Natriuretic Peptide (NT-proBNP), left ventricular end-diastolic diameter (LVEDd), and length of hospital stay and were negatively correlated with left ventricular ejection fraction (LVEF) at baseline. A total of 53 patients (28.2%) were rehospitalized due to cardiac deterioration, 14 (7.4%) died, and 37 (19.7%) developed malignant arrhythmias. A fully adjusted multivariate COX regression model showed that SMOC2 is associated with readmission (HR = 1.02, 95% CI:1.012-1.655). A significant increase in rehospitalization risk was observed in group Q2 (HR =1.064, 95% CI: 1.037, 3.662, p=0.005) and group Q3 (HR =1.085, 95% CI:1.086, 3.792, p=0.009) in comparison with group Q1. The p for trend also shows a linear correlation across the three models (P < 0.001). SMOC2 was associated with the severity of HF in patients, but not with all-cause deaths and arrhythmias during follow-up. Conclusion Plasma SMOC2 is associated with the severity of HF and readmission rate, and is a good predictor of the risk of readmission in patients.
Collapse
Affiliation(s)
- Xin Chen
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, People’s Republic of China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshii, Hubei Province, People’s Republic of China
- Hubei Provincial Key Laboratory of Selenium Resources and Bio applications, Enshii, Hubei Province, People’s Republic of China
| | - Xing Zhong
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, People’s Republic of China
- Department of Medicine, Hubei Minzu University, Enshi, Hubei Province, People’s Republic of China
| | - Dan Luo
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, People’s Republic of China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshii, Hubei Province, People’s Republic of China
- Hubei Provincial Key Laboratory of Selenium Resources and Bio applications, Enshii, Hubei Province, People’s Republic of China
| | - Yuhua Lei
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, People’s Republic of China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshii, Hubei Province, People’s Republic of China
- Hubei Provincial Key Laboratory of Selenium Resources and Bio applications, Enshii, Hubei Province, People’s Republic of China
| | - Rui Huang
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, People’s Republic of China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshii, Hubei Province, People’s Republic of China
- Hubei Provincial Key Laboratory of Selenium Resources and Bio applications, Enshii, Hubei Province, People’s Republic of China
| |
Collapse
|
6
|
Huang Q, Sun Y, Huang W, Zhang F, He H, He Y, Huang F. FTO Positively Regulates Odontoblastic Differentiation via SMOC2 in Human Stem Cells from the Apical Papilla under Inflammatory Microenvironment. Int J Mol Sci 2024; 25:4045. [PMID: 38612855 PMCID: PMC11012055 DOI: 10.3390/ijms25074045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Odontoblastic differentiation of human stem cells from the apical papilla (hSCAPs) is crucial for continued root development and dentin formation in immature teeth with apical periodontitis (AP). Fat mass and obesity-associated protein (FTO) has been reported to regulate bone regeneration and osteogenic differentiation profoundly. However, the effect of FTO on hSCAPs remains unknown. This study aimed to identify the potential function of FTO in hSCAPs' odontoblastic differentiation under normal and inflammatory conditions and to investigate its underlying mechanism preliminarily. Histological staining and micro-computed tomography were used to evaluate root development and FTO expression in SD rats with induced AP. The odontoblastic differentiation ability of hSCAPs was assessed via alkaline phosphatase and alizarin red S staining, qRT-PCR, and Western blotting. Gain- and loss-of-function assays and online bioinformatics tools were conducted to explore the function of FTO and its potential mechanism in modulating hSCAPs differentiation. Significantly downregulated FTO expression and root developmental defects were observed in rats with AP. FTO expression notably increased during in vitro odontoblastic differentiation of hSCAPs, while lipopolysaccharide (LPS) inhibited FTO expression and odontoblastic differentiation. Knockdown of FTO impaired odontoblastic differentiation, whereas FTO overexpression alleviated the inhibitory effects of LPS on differentiation. Furthermore, FTO promoted the expression of secreted modular calcium-binding protein 2 (SMOC2), and the knockdown of SMOC2 in hSCAPs partially attenuated the promotion of odontoblastic differentiation mediated by FTO overexpression under LPS-induced inflammation. This study revealed that FTO positively regulates the odontoblastic differentiation ability of hSCAPs by promoting SMOC2 expression. Furthermore, LPS-induced inflammation compromises the odontoblastic differentiation of hSCAPs by downregulating FTO, highlighting the promising role of FTO in regulating hSCAPs differentiation under the inflammatory microenvironment.
Collapse
Affiliation(s)
- Qi Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yumei Sun
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wushuang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Fuping Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Hongwen He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yifan He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
7
|
Li G, Fang Y, Xu N, Ding Y, Liu D. Fibroblast-like synoviocytes-derived exosomal circFTO deteriorates rheumatoid arthritis by enhancing N6-methyladenosine modification of SOX9 in chondrocytes. Arthritis Res Ther 2024; 26:56. [PMID: 38388473 PMCID: PMC10882813 DOI: 10.1186/s13075-024-03290-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory disease that causes disability worldwide. Exosomes released by fibroblast-like synoviocytes in RA (RA-FLSs-Exos) play a role in the development of RA, and circular RNAs (circRNAs) are important for RA progression. This study aimed to investigate the molecular mechanisms underlying the effects of RA-FLSs-Exos in RA and identify the potential pathway responsible for these effects. METHODS We initially conducted microarray analysis to identify dysregulated circRNAs in exosomes associated with RA. We then co-cultured isolated RA-FLSs-Exos with chondrocytes to examine their role in RA. In vivo experiments were performed using collagen-induced arthritis mouse models, and circFTO knockdown was achieved through intra-articular injection of AAV5 vectors. RESULTS Our findings revealed increased expression of circFTO in both RA-FLSs-Exos and synovial tissues from patients with RA. Exosomal circFTO hindered chondrocyte proliferation, migration, and anabolism while promoting apoptosis and catabolism. Mechanistically, we discovered that circFTO facilitates the formation of methyltransferases complex to suppress SRY-related high-mobility group box 9 (SOX9) expression with assistance from YTH domain family 2 (YTHDF2) through an m6A-dependent mechanism. Furthermore, inhibition of circFTO improved symptoms of RA in vivo. CONCLUSION Taken together, our study demonstrates that exosomal circFTO derived from FLSs contributes to the progression of RA by targeting SOX9. These findings highlight a promising target for treating RA.
Collapse
Affiliation(s)
- Guoqing Li
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225000, China.
| | - Yuxuan Fang
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Nan Xu
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Yimin Ding
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Dan Liu
- Department of Pathology, Affiliated Subei People's Hospital of Yangzhou University, Yangzhou, Jiangsu, 225000, China
| |
Collapse
|
8
|
Xu F, Shen C, Zhang S, Liu Y, Liu D, Kuang Y, Li R, Wang C, Cai X, Shi M, Xiao Y. Coptisine inhibits aggressive and proliferative actions of fibroblast like synoviocytes and exerts a therapeutic potential for rheumatoid arthritis. Int Immunopharmacol 2024; 128:111433. [PMID: 38181676 DOI: 10.1016/j.intimp.2023.111433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
OBJECTIVE Coptisine, a natural bioactive small molecular compound extracted from traditional Chinese herb Coptis chinensis, has been shown to exhibit anti-tumor effect. However, its contribution to autoimmune diseases such as rheumatoid arthritis (RA) is unknown. Here, we evaluate the effect of coptisine in controlling fibroblast-like synoviocytes (FLS)-mediated synovial proliferation and aggression in RA and further explore its underlying mechanism(s). METHODS FLS were separated from synovial tissues obtained from patients with RA. Protein expression was measured by Western blot or immunohistochemistry. Gene expression was detected by quantitative RT-PCR. The EdU incorporation was used to measure cell proliferation. Migration and invasion were determined by Boyden chamber assay. RNA sequencing analysis was used to seek for the target of coptisine. The in vivo effect of coptisine was evaluated in collagen-induced arthritis (CIA) model. RESULTS Treatment with coptisine reduced the proliferation, migration, and invasion, but not apoptosis of RA FLS. Mechanistically, we identified PSAT1, an enzyme that catalyzes serine/one-carbon/glycine biosynthesis, as a novel targeting gene of coptisine in RA FLS. PSAT1 expression was increased in FLS and synovial tissues from patients with RA compared to healthy control subjects. Coptisine treatment or PSAT1 knockdown reduced the TNF-α-induced phosphorylation of p38, ERK1/2, and JNK MAPK pathway. Interestingly, coptisine administration improved the severity of arthritis and reduced synovial PSAT1 expression in mice with CIA. CONCLUSIONS Our data demonstrate that coptisine treatment suppresses aggressive and proliferative actions of RA FLS by targeting PSAT1 and sequential inhibition of phosphorylated p38, ERK1/2, and JNK MAPK pathway. Our findings suggest that coptisine might control FLS-mediated rheumatoid synovial proliferation and aggression, and be a novel potential agent for RA treatment.
Collapse
Affiliation(s)
- Fangqiu Xu
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chuyu Shen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuoyang Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingli Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Di Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Kuang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruiru Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cuicui Wang
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| | - Maohua Shi
- Department of Rheumatology, The First People's Hospital of Foshan, Foshan, Guangdong, China.
| | - Youjun Xiao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Liang J, Yi Q, Liu Y, Li J, Yang Z, Sun W, Sun W. Recent advances of m6A methylation in skeletal system disease. J Transl Med 2024; 22:153. [PMID: 38355483 PMCID: PMC10868056 DOI: 10.1186/s12967-024-04944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Skeletal system disease (SSD) is defined as a class of chronic disorders of skeletal system with poor prognosis and causes heavy economic burden. m6A, methylation at the N6 position of adenosine in RNA, is a reversible and dynamic modification in posttranscriptional mRNA. Evidences suggest that m6A modifications play a crucial role in regulating biological processes of all kinds of diseases, such as malignancy. Recently studies have revealed that as the most abundant epigentic modification, m6A is involved in the progression of SSD. However, the function of m6A modification in SSD is not fully illustrated. Therefore, make clear the relationship between m6A modification and SSD pathogenesis might provide novel sights for prevention and targeted treatment of SSD. This article will summarize the recent advances of m6A regulation in the biological processes of SSD, including osteoporosis, osteosarcoma, rheumatoid arthritis and osteoarthritis, and discuss the potential clinical value, research challenge and future prospect of m6A modification in SSD.
Collapse
Affiliation(s)
- Jianhui Liang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646099, Sichuan, China
| | - Yang Liu
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Jiachen Li
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Zecheng Yang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
10
|
Qu J, Xue X, Wang Z, Ma Z, Jia K, Li F, Zhang Y, Wu R, Zhou F, Zhao P, Li X. Si-Wu-Tang attenuates liver fibrosis via regulating lncRNA H19-dependent pathways involving cytoskeleton remodeling and ECM deposition. Chin J Nat Med 2024; 22:31-46. [PMID: 38278557 DOI: 10.1016/s1875-5364(24)60560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 01/28/2024]
Abstract
Liver fibrosis is a dynamic wound-healing response characterized by the agglutination of the extracellular matrix (ECM). Si-Wu-Tang (SWT), a traditional Chinese medicine (TCM) formula, is known for treating gynecological diseases and liver fibrosis. Our previous studies demonstrated that long non-coding RNA H19 (H19) was markedly upregulated in fibrotic livers while its deficiency markedly reversed fibrogenesis. However, the mechanisms by which SWT influences H19 remain unclear. Thus, we established a bile duct ligation (BDL)-induced liver fibrosis model to evaluate the hepatoprotective effects of SWT on various cells in the liver. Our results showed that SWT markedly improved ECM deposition and bile duct reactions in the liver. Notably, SWT relieved liver fibrosis by regulating the transcription of genes involved in the cytoskeleton remodeling, primarily in hepatic stellate cells (HSCs), and influencing cytoskeleton-related angiogenesis and hepatocellular injury. This modulation collectively led to reduced ECM deposition. Through extensive bioinformatics analyses, we determined that H19 acted as a miRNA sponge and mainly inhibited miR-200, miR-211, and let7b, thereby regulating the above cellular regulatory pathways. Meanwhile, SWT reversed H19-related miRNAs and signaling pathways, diminishing ECM deposition and liver fibrosis. However, these protective effects of SWT were diminished with the overexpression of H19 in vivo. In conclusion, our study elucidates the underlying mechanisms of SWT from the perspective of H19-related signal networks and proposes a potential SWT-based therapeutic strategy for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhixing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zhi Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Kexin Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ruiyu Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fei Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Piwen Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
11
|
Xu Y, Liu W, Ren L. Emerging roles and mechanism of m6A methylation in rheumatoid arthritis. Biomed Pharmacother 2024; 170:116066. [PMID: 38157641 DOI: 10.1016/j.biopha.2023.116066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
Rheumatoid arthritis (RA) is a multifaceted autoimmune disease characterized by systemic inflammation, affecting both articular and extra-articular structures. This condition results in inflammation of joints and synovial membranes, accompanied by the development of systemic comorbidities. Despite extensive research, the precise pathogenic mechanisms responsible for RA have yet to be completely understood. RNA methylation, a burgeoning epigenetic alteration, assumes a pivotal function in the regulation of a myriad of biological phenomena, encompassing immunity, DNA damage response, tumorigenesis, metastasis, stem cell renewal, adipocyte differentiation, circadian rhythms, cellular development and differentiation, and cell division. The N6-methyladenosine (m6A) modification is the most prevalent among the various RNA modifications found in mammalian mRNA. Recent studies have provided evidence of the significant role played by m6A modification in the pathophysiological progression of RA. This review aims to provide a comprehensive analysis of the progress made in research focused on m6A modification in the context of RA, consolidate the underlying mechanisms involved in m6A modification during the initiation of RA and discuss the potential of targeting m6A modification as a viable therapeutic approach for RA.
Collapse
Affiliation(s)
- Yayun Xu
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Wenqiang Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230000, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230000, China
| | - Lijie Ren
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| |
Collapse
|
12
|
Huang Y, Xue Q, Chang J, Wang Y, Cheng C, Xu S, Wang X, Miao C. M6A methylation modification in autoimmune diseases, a promising treatment strategy based on epigenetics. Arthritis Res Ther 2023; 25:189. [PMID: 37784134 PMCID: PMC10544321 DOI: 10.1186/s13075-023-03149-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) methylation modification is involved in the regulation of various biological processes, including inflammation, antitumor, and antiviral immunity. However, the role of m6A modification in the pathogenesis of autoimmune diseases has been rarely reported. METHODS Based on a description of m6A modification and the corresponding research methods, this review systematically summarizes current insights into the mechanism of m6A methylation modification in autoimmune diseases, especially its contribution to rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). RESULTS By regulating different biological processes, m6A methylation is involved in the pathogenesis of autoimmune diseases and provides a promising biomarker for the diagnosis and treatment of such diseases. Notably, m6A methylation modification is involved in regulating a variety of immune cells and mitochondrial energy metabolism. In addition, m6A methylation modification plays a role in the pathological processes of RA, and m6A methylation-related genes can be used as potential targets in RA therapy. CONCLUSIONS M6A methylation modification plays an important role in autoimmune pathological processes such as RA and SLE and represents a promising new target for clinical diagnosis and treatment, providing new ideas for the treatment of autoimmune diseases by targeting m6A modification-related pathways.
Collapse
Affiliation(s)
- Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China
| | - Jun Chang
- Department of Orthopaedics, the First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.
- Anhui Public Health Clinical Center, Hefei, China.
| | - Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China
| | - Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230027, China
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China.
| |
Collapse
|
13
|
SOXC Transcription Factors as Diagnostic Biomarkers and Therapeutic Targets for Arthritis. Int J Mol Sci 2023; 24:ijms24044215. [PMID: 36835620 PMCID: PMC9967432 DOI: 10.3390/ijms24044215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are two common disorders that disrupt the quality of life of millions of people. These two chronic diseases cause damage to the joint cartilage and surrounding tissues of more than 220 million people worldwide. Sex-determining region Y-related (SRY) high-mobility group (HMG) box C, SOXC, is a superfamily of transcription factors that have been recently shown to be involved in various physiological and pathological processes. These include embryonic development, cell differentiation, fate determination, and autoimmune diseases, as well as carcinogenesis and tumor progression. The SOXC superfamily includes SOX4, SOX11, and SOX12, all have a similar DNA-binding domain, i.e., HMG. Herein, we summarize the current knowledge about the role of SOXC transcription factors during arthritis progression and their potential utilization as diagnostic biomarkers and therapeutic targets. The involved mechanistic processes and signaling molecules are discussed. SOX12 appears to have no role in arthritis, however SOX11 is dysregulated and promotes arthritic progression according to some studies but supports joint maintenance and protects cartilage and bone cells according to others. On the other hand, SOX4 upregulation during OA and RA was documented in almost all studies including preclinical and clinical models. Molecular details have indicated that SOX4 can autoregulate its own expression besides regulating the expression of SOX11, a characteristic associated with the transcription factors that protects their abundance and activity. From analyzing the currently available data, SOX4 seems to be a potential diagnostic biomarker and therapeutic target of arthritis.
Collapse
|