1
|
Drobotenko MI, Lyasota OM, Hernandez-Caceres JL, Labrada RR, Svidlov AA, Dorohova АA, Baryshev MG, Nechipurenko YD, Pérez LV, Dzhimak SS. Abnormal open states patterns in the ATXN2 DNA sequence depends on the CAG repeats length. Int J Biol Macromol 2024; 276:133849. [PMID: 39004246 DOI: 10.1016/j.ijbiomac.2024.133849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/04/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Hereditary ataxias are one of the «anticipation diseases» types. Spinocerebral ataxia type 2 occurs when the number of CAG repeats in the coding region of the ATXN2 gene exceeds 34 or more. In healthy people, the CAG repeat region in the ATXN2 gene usually consists of 22-23 CAG trinucleotides. Mutations that increase the length of CAG repeats can cause severe neurodegenerative and neuromuscular disorders known as trinucleotide repeat expansion diseases. The mechanisms causing such diseases are associated with non-canonical configurations that can be formed in the CAG repeat region during replication, transcription or repair. This makes it relevant to study the zones of open states that arise in the region of CAG repeats under torque. The purpose of this work is to study, using mathematical modeling, zones of open states in the region of CAG repeats of the ATXN2 gene, caused by torque. It has been established that the torque effect on the 1st exon of the ATXN2 gene, in addition to the formation of open states in the promoter region, can lead to the formation of additional various sizes open states zones in the CAG repeats region. Moreover, the frequency of additional large zones genesis increases with increasing number of CAG repeats. The inverse of this frequency correlates with the dependence of the disease onset average age on the CAG repeats length. The obtained results will allow us to get closer to understanding the genetic mechanisms that cause trinucleotide repeat diseases.
Collapse
Affiliation(s)
- Mikhail I Drobotenko
- Department of Radiophysics and Nanothechnology, Kuban State University, 350040 Krasnodar, Russian Federation
| | - Oksana M Lyasota
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russian Federation
| | | | | | - Alexandr A Svidlov
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russian Federation
| | - Аnna A Dorohova
- Department of Radiophysics and Nanothechnology, Kuban State University, 350040 Krasnodar, Russian Federation; Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russian Federation
| | - Mikhail G Baryshev
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russian Federation
| | - Yury D Nechipurenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | | | - Stepan S Dzhimak
- Department of Radiophysics and Nanothechnology, Kuban State University, 350040 Krasnodar, Russian Federation; Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russian Federation.
| |
Collapse
|
2
|
Lyasota O, Dorohova A, Hernandez-Caceres JL, Svidlov A, Tekutskaya E, Drobotenko M, Dzhimak S. Stability of the CAG Tract in the ATXN2 Gene Depends on the Localization of CAA Interruptions. Biomedicines 2024; 12:1648. [PMID: 39200113 PMCID: PMC11351189 DOI: 10.3390/biomedicines12081648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
It is known that the presence of CAA codons in the CAG tract affects the nature and time of disease onset caused by the expansion of trinucleotide repeats. The mechanisms leading to the occurrence of these diseases should be sought not only at the level of the physiological role of the ATXN2 protein, but also at the DNA level. These mechanisms are associated with non-canonical configurations (hairpins) that can form in the CAG tract. The tendency of hairpins to slide along the corresponding threads is usually considered important to explain the expansion of the CAG tract. At the same time, hairpins occur in areas of open states. Previous studies on the role of CAA interruptions have suggested that, under certain conditions, they can stabilize the dynamics of the hairpin, preventing the expansion of the CAG tract. We calculated the probability of additional open state zones occurrence in the CAG tract using an angular mathematical model of DNA. The calculations made it possible to establish that CAA interruptions affect the stability of the CAG tract, and this influence, depending on the localization of the interruption, can both increase and decrease the stability of the CAG tract.
Collapse
Affiliation(s)
- Oksana Lyasota
- Department of Biologically Active Substances, Kuban State University, 350040 Krasnodar, Russia; (O.L.); (M.D.)
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia; (A.S.); (E.T.); (S.D.)
| | - Anna Dorohova
- Department of Biologically Active Substances, Kuban State University, 350040 Krasnodar, Russia; (O.L.); (M.D.)
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia; (A.S.); (E.T.); (S.D.)
| | | | - Alexandr Svidlov
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia; (A.S.); (E.T.); (S.D.)
| | - Elena Tekutskaya
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia; (A.S.); (E.T.); (S.D.)
| | - Mikhail Drobotenko
- Department of Biologically Active Substances, Kuban State University, 350040 Krasnodar, Russia; (O.L.); (M.D.)
| | - Stepan Dzhimak
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia; (A.S.); (E.T.); (S.D.)
- Department of Radiophysics and Nanotechnology, Kuban State University, 350040 Krasnodar, Russia
| |
Collapse
|
3
|
Paudel B, Jeong SY, Martinez CP, Rickman A, Haluck-Kangas A, Bartom ET, Fredriksen K, Affaneh A, Kessler JA, Mazzulli JR, Murmann AE, Rogalski E, Geula C, Ferreira A, Heckmann BL, Green DR, Sadleir KR, Vassar R, Peter ME. Death Induced by Survival gene Elimination (DISE) correlates with neurotoxicity in Alzheimer's disease and aging. Nat Commun 2024; 15:264. [PMID: 38238311 PMCID: PMC10796375 DOI: 10.1038/s41467-023-44465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration, but the specific events that cause cell death remain poorly understood. Death Induced by Survival gene Elimination (DISE) is a cell death mechanism mediated by short (s) RNAs acting through the RNA-induced silencing complex (RISC). DISE is thus a form of RNA interference, in which G-rich 6mer seed sequences in the sRNAs (position 2-7) target hundreds of C-rich 6mer seed matches in genes essential for cell survival, resulting in the activation of cell death pathways. Here, using Argonaute precipitation and RNAseq (Ago-RP-Seq), we analyze RISC-bound sRNAs to quantify 6mer seed toxicity in several model systems. In mouse AD models and aging brain, in induced pluripotent stem cell-derived neurons from AD patients, and in cells exposed to Aβ42 oligomers, RISC-bound sRNAs show a shift to more toxic 6mer seeds compared to controls. In contrast, in brains of "SuperAgers", humans over age 80 who have superior memory performance, RISC-bound sRNAs are shifted to more nontoxic 6mer seeds. Cells depleted of nontoxic sRNAs are sensitized to Aβ42-induced cell death, and reintroducing nontoxic RNAs is protective. Altogether, the correlation between DISE and Aβ42 toxicity suggests that increasing the levels of nontoxic miRNAs in the brain or blocking the activity of toxic RISC-bound sRNAs could ameliorate neurodegeneration.
Collapse
Affiliation(s)
- Bidur Paudel
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Si-Yeon Jeong
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Ministry of Food and Drug Safety, Pharmaceutical Safety Bureau, Pharmaceutical Policy Division 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Carolina Pena Martinez
- USF Health Byrd Alzheimer's Center and Neuroscience Institute; Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Alexis Rickman
- USF Health Byrd Alzheimer's Center and Neuroscience Institute; Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Ashley Haluck-Kangas
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Preventive Medicine/Division of Biostatistics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Kristina Fredriksen
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Amira Affaneh
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - John A Kessler
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Joseph R Mazzulli
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Andrea E Murmann
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Healthy Aging & Alzheimer's Research Care (HAARC) Center, Department of Neurology, The University of Chicago, Chicago, IL, 60637, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Adriana Ferreira
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Bradlee L Heckmann
- USF Health Byrd Alzheimer's Center and Neuroscience Institute; Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Katherine R Sadleir
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Robert Vassar
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Marcus E Peter
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|