1
|
Yamashita R, Tsutsui S, Mizumoto S, Watanabe T, Yamamoto N, Nakano K, Yamada S, Okamura T, Furuichi T. CANT1 Is Involved in Collagen Fibrogenesis in Tendons by Regulating the Synthesis of Dermatan/Chondroitin Sulfate Attached to the Decorin Core Protein. Int J Mol Sci 2025; 26:2463. [PMID: 40141107 PMCID: PMC11941851 DOI: 10.3390/ijms26062463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Tendons are connective tissues that join muscles and bones and are rich in glycosaminoglycans (GAGs). Decorin is a proteoglycan with one dermatan sulfate (DS) or chondroitin sulfate (CS) chain (a type of GAG) attached to its core protein and is involved in regulating the assembly of collagen fibrils in the tendon extracellular matrix (ECM). Calcium-activated nucleotidase 1 (CANT1), a nucleotidase that hydrolyzes uridine diphosphate into uridine monophosphate and phosphate, plays an important role in GAG synthesis in cartilage. In the present study, we performed detailed histological and biochemical analyses of the tendons from Cant1 knockout (Cant1-/-) mice. No abnormalities were observed in the tendons on postnatal day 1 (P1); however, remarkable hypoplasia was observed on P30 and P180. The collagen fibrils were more angular and larger in the Cant1-/- tendons than in the control (Ctrl) tendons. In the Cant1-/- tendons, the DS/CS content was significantly reduced, and the DC/CS chains attached to the decorin core protein became shorter than those in the Ctrl tendons. No abnormalities were observed in the proliferation and differentiation of tendon fibroblasts (tenocytes) in the Cant1-/- mice. These results strongly suggest that CANT1 dysfunction causes defective DS/CS synthesis, followed by impairment of decorin function, which regulates collagen fibrogenesis in the tendon ECM. Multiple joint dislocations are a clinical feature of Desbuquois dysplasia type 1 caused by human CANT1 mutations. The multiple joint dislocations associated with this genetic disorder may be attributed to tendon fragility resulting from CANT1 dysfunction.
Collapse
Affiliation(s)
- Rina Yamashita
- Laboratory of Laboratory Animal Science and Medicine, Graduate School of Veterinary Sciences, Iwate University, Morioka 020-8550, Japan;
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan;
| | - Saki Tsutsui
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan;
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan; (S.M.)
| | - Takafumi Watanabe
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan;
| | - Noritaka Yamamoto
- Department of Mechanical Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan;
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Shinjuku-ku 162-8655, Japan (T.O.)
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan; (S.M.)
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Shinjuku-ku 162-8655, Japan (T.O.)
| | - Tatsuya Furuichi
- Laboratory of Laboratory Animal Science and Medicine, Graduate School of Veterinary Sciences, Iwate University, Morioka 020-8550, Japan;
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan;
| |
Collapse
|
2
|
Santos JI, Gonçalves M, Almeida MB, Rocha H, Duarte AJ, Matos L, Moreira LV, Encarnação M, Gaspar P, Prata MJ, Coutinho MF, Alves S. mRNA Degradation as a Therapeutic Solution for Mucopolysaccharidosis Type IIIC: Use of Antisense Oligonucleotides to Promote Downregulation of Heparan Sulfate Synthesis. Int J Mol Sci 2025; 26:1273. [PMID: 39941041 PMCID: PMC11818647 DOI: 10.3390/ijms26031273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Mucopolysaccharidosis type IIIC is a neurodegenerative lysosomal storage disorder (LSD) characterized by the accumulation of undegraded heparan sulfate (HS) due to the lack of an enzyme responsible for its degradation: acetyl-CoA:α-glucosaminide N-acetyltransferase (HGSNAT). Classical treatments are ineffective. Here, we attempt a new approach in genetic medicine, genetic substrate reduction therapy (gSRT), to counteract this neurological disorder. Briefly, we used synthetic oligonucleotides, particularly gapmer antisense oligonucleotides (ASOs), to target the synthesis of the accumulated compounds at the molecular level, downregulating a specific gene involved in the first step of HS biosynthesis, XYLT1. Our goal was to reduce HS production and, consequently, its accumulation. Initially, five gapmer ASOs were designed and their potential to decrease XYLT1 mRNA levels were tested in patient-derived fibroblasts. Subsequent analyses focused on the two best performing molecules alone. The results showed a high inhibition of the XYLT1 gene mRNA (around 90%), a decrease in xylosyltransferase I (XT-I) protein levels and a reduction in HS storage 6 and 10 days after transfection (up to 21% and 32%, respectively). Overall, our results are highly promising and may represent the initial step towards the development of a potential therapeutic option not only for MPS IIIC, but virtually for every other MPS III form. Ultimately, the same principle may also apply to other neuropathic MPS.
Collapse
Affiliation(s)
- Juliana Inês Santos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (M.G.); (M.B.A.); (A.J.D.); (L.M.); (L.V.M.); (M.E.); (M.F.C.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
| | - Mariana Gonçalves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (M.G.); (M.B.A.); (A.J.D.); (L.M.); (L.V.M.); (M.E.); (M.F.C.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Matilde Barbosa Almeida
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (M.G.); (M.B.A.); (A.J.D.); (L.M.); (L.V.M.); (M.E.); (M.F.C.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Department of Medical Sciences, Campus Universitário de Santiago, Edifício da Saúde, Agra do Crasto, 3810-193 Aveiro, Portugal
| | - Hugo Rocha
- Newborn Screening, Metabolism and Genetics Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (H.R.); (P.G.)
| | - Ana Joana Duarte
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (M.G.); (M.B.A.); (A.J.D.); (L.M.); (L.V.M.); (M.E.); (M.F.C.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Liliana Matos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (M.G.); (M.B.A.); (A.J.D.); (L.M.); (L.V.M.); (M.E.); (M.F.C.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Luciana Vaz Moreira
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (M.G.); (M.B.A.); (A.J.D.); (L.M.); (L.V.M.); (M.E.); (M.F.C.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Marisa Encarnação
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (M.G.); (M.B.A.); (A.J.D.); (L.M.); (L.V.M.); (M.E.); (M.F.C.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Paulo Gaspar
- Newborn Screening, Metabolism and Genetics Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (H.R.); (P.G.)
| | - Maria João Prata
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
- Health Research and Innovation Institute, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Maria Francisca Coutinho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (M.G.); (M.B.A.); (A.J.D.); (L.M.); (L.V.M.); (M.E.); (M.F.C.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (M.G.); (M.B.A.); (A.J.D.); (L.M.); (L.V.M.); (M.E.); (M.F.C.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
3
|
An X, Zhou F, Li G, Wei Y, Huang B, Li M, Zhang Q, Xu K, Zhao RC, Su J. Cyaonoside A-loaded composite hydrogel microspheres to treat osteoarthritis by relieving chondrocyte inflammation. J Mater Chem B 2024; 12:4148-4161. [PMID: 38591180 DOI: 10.1039/d4tb00294f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Cyaonoside A (CyA), derived from the natural Chinese medicine, Cyathula officinalis Kuan, which was for a long time used to treat knee injuries and relieve joint pain in traditional Chinese medicine, showed an unclear mechanism for protecting cartilage. In addition, CyA was poorly hydrosoluble and incapable of being injected directly into the joint cavity, which limited its clinical application. This study reveals that CyA resisted IL-1β-mediated chondrogenic inflammation and apoptosis. Next, transcriptome sequencing is used to explore the potential mechanisms underlying CyA regulation of MSC chondrogenic differentiation. Based on these findings, CyA-loaded composite hydrogel microspheres (HLC) were developed and they possessed satisfactory loading efficiency, a suitable degradation rate and good biocompatibility. HLC increased chondrogenic anabolic gene (Acan, COL2A, and SOX9) expression, while downregulating the expression of the catabolic marker MMP13 in vitro. In the osteoarthritis mouse model, HLC demonstrated promising therapeutic capabilities by protecting the integrity of articular cartilage. In conclusion, this study provides insights into the regulatory mechanisms of CyA for chondrocytes and proposes a composite hydrogel microsphere-based advanced therapeutic strategy for osteoarthritis.
Collapse
Affiliation(s)
- Xingyan An
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Biaotong Huang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| | - Mengmeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100190, China.
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100730, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
4
|
Li P, Wang D, Lu W, He X, Hu J, Yun H, Zhao C, Yang L, Jie Q, Luo Z. Targeting FGFR3 signaling and drug repurposing for the treatment of SLC26A2-related chondrodysplasia in mouse model. J Orthop Translat 2024; 44:88-101. [PMID: 38282752 PMCID: PMC10818158 DOI: 10.1016/j.jot.2023.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 08/18/2023] [Accepted: 09/20/2023] [Indexed: 01/30/2024] Open
Abstract
Background Mutations in Slc26a2 cause a spectrum of autosomal-recessive chondrodysplasia with a significant and negligible influence on the quality of life. It has been reported that Slc26a2 deficiency triggers the ATF6 branch of the UPR, which may, in turn, activate the negative regulator of the FGFR3 signaling pathway. However, the correlation between the deletion of Slc26a2 and the augmentation of downstream phosphorylation of FGFR3 has not been investigated in vivo. Methods First, we constructed Slc26a2 and Fgfr3 double knockout mouse lines and observed gross views of the born mice and histological staining of the tibial growth plates. The second approach was to construct tamoxifen-inducible Cre-ERT2 mouse models to replicate SLC26A2-related non-lethal dysplastic conditions. Pharmacological intervention was performed by administering the FGFR3 inhibitor NVP-BGJ398. The effect of NVP-BGJ398 on chondrocytes was assessed by Alcian blue staining, proliferation, apoptosis, and chondrocyte-specific markers and then verified by western blotting for variations in the downstream markers of FGFR3. The growth process was detected using X-rays, micro-CT examination, histomorphometry staining of growth plates, and immunofluorescence. Results Genetic ablation of Fgfr3 in embryonic Slc26a2-deficient chondrocytes slightly attenuated chondrodysplasia. Subsequently, in the constructed mild dysplasia model, we found that postnatal intervention with Fgfr3 gene in Slc26a2-deficient chondrocytes partially alleviated chondrodysplasia. In chondrocyte assays, NVP-BGJ398 suppressed the defective phenotype of Slc26a2-deficient chondrocytes and restored the phosphorylation downstream of FGFR3 in a concentration-dependent manner. In addition, in vivo experiments showed significant alleviation of impaired chondrocyte differentiation, and micro-CT analysis showed a clear improvement in trabecular bone microarchitectural parameters. Conclusion Our results suggested that inhibition of FGFR3 signaling pathway overactivation and NVP-BGJ398 has promising therapeutic implications for the development of SLC26A2-related skeletal diseases in humans. The translational potential of this article Our data provide genetic and pharmacological evidence that targeting FGFR3 signaling via NVP-BGJ398 could be a route for the treatment of SLC26A2-associated skeletal disorders, which promisingly advances translational applications and therapeutic development.
Collapse
Affiliation(s)
- Pan Li
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| | - Dong Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Weiguang Lu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin He
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Jingyan Hu
- Department of Biology, Northwestern University, Xi'an, China
| | - Haitao Yun
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chengxiang Zhao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| | - Qiang Jie
- Department of Orthopedic Surgery, HongHui Hospital, Xi'an Jiaotong University, College of Medicine, Xi'an, China
| | - Zhuojing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|