1
|
de Mattos TRF, Formiga-Jr MA, Saraiva EM. Resveratrol prevents the release of neutrophil extracellular traps (NETs) by controlling hydrogen peroxide levels and nuclear elastase migration. Sci Rep 2024; 14:9107. [PMID: 38643283 PMCID: PMC11032324 DOI: 10.1038/s41598-024-59854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/16/2024] [Indexed: 04/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are defense mechanisms that trap and kill microorganisms and degrade cytokines. However, excessive production, dysregulation of suppression mechanisms, or inefficient removal of NETs can contribute to increased inflammatory response and the development of pathological conditions. Therefore, research has focused on identifying drugs that inhibit or delay the NET release process. Since reactive oxygen species (ROS) play a significant role in NET release, we aimed to investigate whether resveratrol (RSV), with a wide range of biological and pharmacological properties, could modulate NET release in response to different stimuli. Thus, human neutrophils were pretreated with RSV and subsequently stimulated with PMA, LPS, IL-8, or Leishmania. Our findings revealed that RSV reduced the release of NETs in response to all tested stimuli. RSV decreased hydrogen peroxide levels in PMA- and LPS-stimulated neutrophils, inhibited myeloperoxidase activity, and altered the localization of neutrophil elastase. RSV inhibition of NET generation was not mediated through A2A or A2B adenosine receptors or PKA. Based on the observed effectiveness of RSV in inhibiting NET release, our study suggests that this flavonoid holds potential as a candidate for treating NETs involving pathologies.
Collapse
Affiliation(s)
- Thayana Roberta Ferreira de Mattos
- Laboratório de Imunidade Inata, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Marcos Antonio Formiga-Jr
- Laboratório de Imunidade Inata, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Elvira Maria Saraiva
- Laboratório de Imunidade Inata, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Gaggero G, Bertolotto M, Verzola D, Ferro J, Fiaschi P. Cerebral small vessel vasculitis triggered by neurotoxoplasma-related ETosis: histological and immunofluorescence observation of a case. JOURNAL OF RHEUMATIC DISEASES 2024; 31:130-132. [PMID: 38559793 PMCID: PMC10973351 DOI: 10.4078/jrd.2023.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 04/04/2024]
Affiliation(s)
| | - Maria Bertolotto
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genova, Italy
| | - Daniela Verzola
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, University of Genoa, Genova, Italy
| | - Jacopo Ferro
- Pathology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Pietro Fiaschi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genova, Italy
| |
Collapse
|
3
|
Meidrops K, Groma V, Goldins NR, Apine L, Skuja S, Svirskis S, Gudra D, Fridmanis D, Stradins P. Understanding Bartonella-Associated Infective Endocarditis: Examining Heart Valve and Vegetation Appearance and the Role of Neutrophilic Leukocytes. Cells 2023; 13:43. [PMID: 38201247 PMCID: PMC10778237 DOI: 10.3390/cells13010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The endocardium and cardiac valves undergo severe impact during infective endocarditis (IE), and the formation of vegetation places IE patients at a heightened risk of embolic complications and mortality. The relevant literature indicates that 50% of IE cases exhibit structurally normal cardiac valves, with no preceding history of heart valve disease. Gram-positive cocci emerge as the predominant causative microorganisms in IE, while Gram-negative Bartonella spp., persisting in the endothelium, follow pathogenic pathways distinct from those of typical IE-causing agents. Employing clinical as well as advanced microbiological and molecular assays facilitated the identification of causative pathogens, and various morphological methods were applied to evaluate heart valve damage, shedding light on the role of neutrophilic leukocytes in host defense. In this research, the immunohistochemical analysis of neutrophilic leukocyte activation markers such as myeloperoxidase, neutrophil elastase, calprotectin, and histone H3, was performed. A distinct difference in the expression patterns of these markers was observed when comparing Bartonella spp.-caused and non-Bartonella spp.-caused IE. The markers exhibited significantly higher expression in non-Bartonella spp.-caused IE compared to Bartonella spp.-caused IE, and they were more prevalent in vegetation than in the valvular leaflets. Notably, the expression of these markers in all IE cases significantly differed from that in control samples. Furthermore, we advocated the use of 16S rRNA Next-Generation Sequencing on excised heart valves as an effective diagnostic tool for IE, particularly in cases where blood cultures yielded negative results. The compelling results achieved in this study regarding the enigmatic nature of Bartonella spp. IE's pathophysiology contribute significantly to our understanding of the peculiarities of inflammation and immune responses.
Collapse
Affiliation(s)
- Kristians Meidrops
- Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia (L.A.); (P.S.)
- Centre of Cardiac Surgery, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia
| | - Valerija Groma
- Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia (L.A.); (P.S.)
- Joint Laboratory of Electron Microscopy, Riga Stradins University, 9 Kronvalda Boulevard, LV-1010 Riga, Latvia
| | - Niks Ricards Goldins
- Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia (L.A.); (P.S.)
| | - Lauma Apine
- Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia (L.A.); (P.S.)
| | - Sandra Skuja
- Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia (L.A.); (P.S.)
- Joint Laboratory of Electron Microscopy, Riga Stradins University, 9 Kronvalda Boulevard, LV-1010 Riga, Latvia
| | - Simons Svirskis
- Institute of Microbiology and Virology, Riga Stradins University, Ratsupites Str. 5, LV-1067 Riga, Latvia;
| | - Dita Gudra
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (D.G.); (D.F.)
| | - Davids Fridmanis
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (D.G.); (D.F.)
| | - Peteris Stradins
- Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia (L.A.); (P.S.)
- Centre of Cardiac Surgery, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia
| |
Collapse
|