1
|
Baek JS, Lee JH, Kim JH, Cho SS, Kim YS, Yang JH, Shin EJ, Kang HG, Kim SJ, Ahn SG, Park EY, Baek DJ, Yim SK, Kang KW, Ki SH, Kim KM. An inducible sphingosine kinase 1 in hepatic stellate cells potentiates liver fibrosis. Biochem Pharmacol 2024; 229:116520. [PMID: 39236934 DOI: 10.1016/j.bcp.2024.116520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Hepatic stellate cells (HSCs) play a role in hepatic fibrosis and sphingosine kinase (SphK) is involved in biological processes. As studies on the regulatory mechanisms and functions of SphK in HSCs during liver fibrosis are currently limited, this study aimed to elucidate the regulatory mechanism and connected pathways of SphK upon HSC activation. The expression of SphK1 was higher in HSCs than in hepatocytes, and upregulated in activated primary HSCs. SphK1 was also increased in liver homogenates of carbon tetrachloride-treated or bile duct ligated mice and in transforming growth factor-β (TGF-β)-treated LX-2 cells. TGF-β-mediated SphK1 induction was due to Smad3 signaling in LX-2 cells. SphK1 modulation altered the expression of liver fibrogenesis-related genes. This SphK1-mediated profibrogenic effect was dependent on SphK1/sphingosine-1-phosphate/sphingosine-1-phosphate receptor signaling through ERK. Epigallocatechin gallate blocked TGF-β-induced SphK1 expression and hepatic fibrogenesis by attenuating Smad and MAPK activation. SphK1 induced by TGF-β facilitates HSC activation and liver fibrogenesis, which is reversed by epigallocatechin gallate. Accordingly, SphK1 and related signal transduction may be utilized to treat liver fibrosis.
Collapse
Affiliation(s)
- Jin Sol Baek
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju 61452, South Korea
| | - Ji Hyun Lee
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju 61452, South Korea
| | - Ji Hye Kim
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju 61452, South Korea
| | - Sam Seok Cho
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju 61452, South Korea; Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju 61452, Republic of Korea; Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju 61452, Republic of Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-do 58245, Republic of Korea
| | - Eun Jin Shin
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju 61452, Republic of Korea; Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea; Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju 61452, Republic of Korea
| | - Hyeon-Gu Kang
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju 61452, Republic of Korea; Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea
| | - Seok-Jun Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju 61452, Republic of Korea; Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea; Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju 61452, Republic of Korea
| | - Sang-Gun Ahn
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Eun Young Park
- College of Pharmacy, Mokpo National University, Muan-gun, Jeollanam-do 58554, Republic of Korea
| | - Dong Jae Baek
- College of Pharmacy, Mokpo National University, Muan-gun, Jeollanam-do 58554, Republic of Korea
| | - Sung-Kun Yim
- Marine Biotechnology Research Center, Jeonnam Bioindustry Foundation, 21-7, Nonggongdanji 4Gil, Wando-eup, Wando-gun, Jeollanam-do 59108, Republic of Korea
| | - Keon Wook Kang
- Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung Hwan Ki
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju 61452, South Korea
| | - Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju 61452, Republic of Korea; Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea; Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju 61452, Republic of Korea.
| |
Collapse
|
2
|
Zhang L, Zhang J, Zhou Y, Xia Q, Xie J, Zhu B, Wang Y, Yang Z, Li J. Azoramide ameliorates cadmium-induced cytotoxicity by inhibiting endoplasmic reticulum stress and suppressing oxidative stress. PeerJ 2024; 12:e16844. [PMID: 38313032 PMCID: PMC10838077 DOI: 10.7717/peerj.16844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/07/2024] [Indexed: 02/06/2024] Open
Abstract
Background Cadmium (Cd) is hazardous to human health because of its cytotoxicity and long biological half-life. Azoramide is a small molecular agent that targets the endoplasmic reticulum (ER) and moderates the unfolded protein response. However, its role in Cd-induced cytotoxicity remains unclear. This study was performed to investigate the protective effect of azoramide against Cd-induced cytotoxicity and elucidate its underlying mechanisms. Methods Inductively coupled plasma‒mass spectrometry was used to measure Cd concentrations in each tissue of ICR male mice. The human proximal tubule epithelial cell line HK-2 and the human retinal pigment epithelial cell line ARPE-19 were used in the in vitro study. Cell apoptosis was determined by DAPI staining, JC-1 staining, and annexin V/propidium iodide double staining. Intracellular oxidative stress was detected by MitoSOX red staining, western blot, and quantitative real-time PCR. Moreover, ER stress signaling, MAPK cascades, and autophagy signaling were analyzed by western blot. Results The present data showed that Cd accumulated in various organs of ICR mice, and the concentrations of Cd in the studied organs, from high to low, were as follows: liver > kidney > testis > lung > spleen > eye. Our study demonstrated that azoramide inhibited ER stress by promoting BiP expression and suppressing the PERK-eIF2α-CHOP pathway. Additionally, we also found that azoramide significantly decreased ER stress-associated radical oxidative species production, attenuated p38 MAPK and JNK signaling, and inhibited autophagy, thus suppressing apoptosis in HK-2 and ARPE-19 cells. Conclusion Our study investigated the effect of azoramide on Cd-induced cytotoxicity and revealed that azoramide may be a therapeutic drug for Cd poisoning.
Collapse
Affiliation(s)
- Lingmin Zhang
- Department of Laboratory Medicine, Huangyan Hospital, Wenzhou Medical University, Taizhou, Zhejiang Province, People's Republic of China
| | - Jianguo Zhang
- Department of Laboratory Medicine, Huangyan Hospital, Wenzhou Medical University, Taizhou, Zhejiang Province, People's Republic of China
| | - Yingying Zhou
- Department of Laboratory Medicine, Huangyan Hospital, Wenzhou Medical University, Taizhou, Zhejiang Province, People's Republic of China
| | - Qingqing Xia
- Department of Laboratory Medicine, Huangyan Hospital, Wenzhou Medical University, Taizhou, Zhejiang Province, People's Republic of China
| | - Jing Xie
- Department of Laboratory Medicine, Huangyan Hospital, Wenzhou Medical University, Taizhou, Zhejiang Province, People's Republic of China
| | - Bihong Zhu
- Department of Neurology, Huangyan Hospital, Wenzhou Medical University, Taizhou, Zhejiang Province, People's Republic of China
| | - Yang Wang
- Department of Gastroenterology, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Zaixing Yang
- Department of Laboratory Medicine, Huangyan Hospital, Wenzhou Medical University, Taizhou, Zhejiang Province, People's Republic of China
| | - Jie Li
- Department of Laboratory Medicine, Huangyan Hospital, Wenzhou Medical University, Taizhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
3
|
Masuda-Kuroki K, Alimohammadi S, Di Nardo A. The Role of Sphingolipids and Sphingosine-1-phosphate-Sphingosine-1-phosphate-receptor Signaling in Psoriasis. Cells 2023; 12:2352. [PMID: 37830566 PMCID: PMC10571972 DOI: 10.3390/cells12192352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Psoriasis is a long-lasting skin condition characterized by redness and thick silver scales on the skin's surface. It involves various skin cells, including keratinocytes, dendritic cells, T lymphocytes, and neutrophils. The treatments for psoriasis range from topical to systemic therapies, but they only alleviate the symptoms and do not provide a fundamental cure. Moreover, systemic treatments have the disadvantage of suppressing the entire body's immune system. Therefore, a new treatment strategy with minimal impact on the immune system is required. Recent studies have shown that sphingolipid metabolites, particularly ceramide and sphingosine-1-phosphate (S1P), play a significant role in psoriasis. Specific S1P-S1P-receptor (S1PR) signaling pathways have been identified as crucial to psoriasis inflammation. Based on these findings, S1PR modulators have been investigated and have been found to improve psoriasis inflammation. This review will discuss the metabolic pathways of sphingolipids, the individual functions of these metabolites, and their potential as a new therapeutic approach to psoriasis.
Collapse
Affiliation(s)
| | | | - Anna Di Nardo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (K.M.-K.); (S.A.)
| |
Collapse
|