1
|
Choi H, Yang SW, Joo JS, Park M, Jin Y, Kim JW, Lee SY, Lee SV, Yun TJ, Cho ML, Hwang HS, Kang YS. Sialylated IVIg binding to DC-SIGN + Hofbauer cells induces immune tolerance through the caveolin-1/NF-kB pathway and IL-10 secretion. Clin Immunol 2023; 246:109215. [PMID: 36581222 DOI: 10.1016/j.clim.2022.109215] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Although the use of IVIg has increased in various immune-driven diseases and even in pregnancy, the exact action mechanisms of IVIg are not fully understood. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) is a known receptor for α-2,6-sialylated IgG (sIVIg), which is responsible for the anti-inflammatory effect of IVIg. DC-SIGN is expressed on Hofbauer cells (HBCs) of the fetal villi of the placenta which act as an innate immune modulator at the maternal-fetal interface. Preeclampsia is a major complication in pregnancy and is related to IL-10, a cytokine with an important role in immune tolerance. DC-SIGN interaction with sIVIg in HBCs promoted IL-10 secretion through the activation of the caveolin-1/NF-κB pathway, especially in plasma lipid rafts. Consistent results were obtained for HBCs from patients with preeclampsia. Collectively, the stimulation of DC-SIGN+ HBCs with sIVIg enhanced immune tolerance in the feto-maternal environment, suggesting the therapeutic application of sIVIg to prevent preeclampsia.
Collapse
Affiliation(s)
- Hyeongjwa Choi
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University; 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Seung-Woo Yang
- Department of Obstetrics and Gynecology, Sang-Gye Paik Hospital, Inje University School of Medicine; Seoul 01757, Republic of Korea
| | - Jin-Soo Joo
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University; 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea; Department of Veterinary Pharmacology and Toxicology, Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University; 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Min Park
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University; 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Yihua Jin
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University; 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Ji-Woon Kim
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University; 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Seon-Yeong Lee
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Vin Lee
- Department of Veterinary Pharmacology and Toxicology, Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University; 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Tae-Jin Yun
- Department of Pathology, New York University Grossman School of Medicine; New York, NY 10016, USA
| | - Mi-La Cho
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, South Korea
| | - Han-Sung Hwang
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine; Seoul, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Young-Sun Kang
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University; 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea; Department of Veterinary Pharmacology and Toxicology, Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University; 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; KU Research Center for Zoonosis, Konkuk University; 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
2
|
Kulkarni R, Wiemer EAC, Chang W. Role of Lipid Rafts in Pathogen-Host Interaction - A Mini Review. Front Immunol 2022; 12:815020. [PMID: 35126371 PMCID: PMC8810822 DOI: 10.3389/fimmu.2021.815020] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Lipid rafts, also known as microdomains, are important components of cell membranes and are enriched in cholesterol, glycophospholipids and receptors. They are involved in various essential cellular processes, including endocytosis, exocytosis and cellular signaling. Receptors are concentrated at lipid rafts, through which cellular signaling can be transmitted. Pathogens exploit these signaling mechanisms to enter cells, proliferate and egress. However, lipid rafts also play an important role in initiating antimicrobial responses by sensing pathogens via clustered pathogen-sensing receptors and triggering downstream signaling events such as programmed cell death or cytokine production for pathogen clearance. In this review, we discuss how both host and pathogens use lipid rafts and associated proteins in an arms race to survive. Special attention is given to the involvement of the major vault protein, the main constituent of a ribonucleoprotein complex, which is enriched in lipid rafts upon infection with vaccinia virus.
Collapse
Affiliation(s)
- Rakesh Kulkarni
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center, Academia Sinica and Graduate Institute of Life Science, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Rakesh Kulkarni, ; Wen Chang,
| | - Erik A. C. Wiemer
- Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Rakesh Kulkarni, ; Wen Chang,
| |
Collapse
|
3
|
Pereira AR, Fiamingo A, de O. Pedro R, Campana-Filho SP, Miranda PB, Oliveira ON. Enhanced chitosan effects on cell membrane models made with lipid raft monolayers. Colloids Surf B Biointerfaces 2020; 193:111017. [DOI: 10.1016/j.colsurfb.2020.111017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022]
|
4
|
Marinkovic D, Marinkovic T. Putative role of marginal zone B cells in pathophysiological processes. Scand J Immunol 2020; 92:e12920. [PMID: 32594535 DOI: 10.1111/sji.12920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/21/2020] [Indexed: 12/16/2022]
Abstract
The maintenance of inner integrity of an organism is founded on the proper performance of two immunity branches, innate and adaptive immune responses. Recently, it became apparent that subset of splenic B cells named marginal zone B cells (MZB cells) exhibits unique developmental and functional features that bridge these two immunity branches. Strategically positioned at the site where blood and lymph are filtered, MZB cells represent a population of sentinels that rapidly proliferate and differentiate into IgM plasmablast cells when encountered with blood-borne, thymus-independent (TI) Ags. Moreover, MZB cells have intrinsic capability to induce potent CD4+ helper T cell response and cytokine production upon stimulation with soluble antigens. Due to their ability to overcome a time gap prior the establishment of the full adaptive response towards pathogens, MZB cells connect and direct innate and adaptive immunity. An additional interesting characteristic of MZB cells is capacity to function as regulatory cells in autoimmune processes. MZB cells may also contribute to the control of autoimmunity via the induction of tolerance by apoptotic cells. Importantly, in the clear association with inflammation and autoimmunity, MZB cells may transform into MALT lymphoma, representing a concurrence point for the infection, immunity and malignancy. This paper presents an insight into the complex biology of marginal zone B cells and their role in intertwining and directing innate and adaptive immune processes at the physiological and pathological level.
Collapse
Affiliation(s)
- Dragan Marinkovic
- Faculty of Special Education and Rehabilitation, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|