1
|
Wang C, Ma X. The role of acetylation and deacetylation in cancer metabolism. Clin Transl Med 2025; 15:e70145. [PMID: 39778006 PMCID: PMC11706801 DOI: 10.1002/ctm2.70145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
As a hallmark of cancer, metabolic reprogramming adjusts macromolecular synthesis, energy metabolism and redox homeostasis processes to adapt to and promote the complex biological processes of abnormal growth and proliferation. The complexity of metabolic reprogramming lies in its precise regulation by multiple levels and factors, including the interplay of multiple signalling pathways, precise regulation of transcription factors and dynamic adjustments in metabolic enzyme activity. In this complex regulatory network, acetylation and deacetylation, which are important post-translational modifications, regulate key molecules and processes related to metabolic reprogramming by affecting protein function and stability. Dysregulation of acetylation and deacetylation may alter cancer cell metabolic patterns by affecting signalling pathways, transcription factors and metabolic enzyme activity related to metabolic reprogramming, increasing the susceptibility to rapid proliferation and survival. In this review, we focus on discussing how acetylation and deacetylation regulate cancer metabolism, thereby highlighting the central role of these post-translational modifications in metabolic reprogramming, and hoping to provide strong support for the development of novel cancer treatment strategies. KEY POINTS: Protein acetylation and deacetylation are key regulators of metabolic reprogramming in tumour cells. These modifications influence signalling pathways critical for tumour metabolism. They modulate the activity of transcription factors that drive gene expression changes. Metabolic enzymes are also affected, altering cellular metabolism to support tumour growth.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyang CityLiaoning ProvinceChina
- Key Laboratory of Gynecological Oncology of Liaoning ProvinceDepartment of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Xiaoxin Ma
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyang CityLiaoning ProvinceChina
- Key Laboratory of Gynecological Oncology of Liaoning ProvinceDepartment of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| |
Collapse
|
2
|
Ma S, Yi S, Zou H, Fan S, Xiao Y. The role of PRMT1 in cellular regulation and disease: Insights into biochemical functions and emerging inhibitors for cancer therapy. Eur J Pharm Sci 2025; 204:106958. [PMID: 39521191 DOI: 10.1016/j.ejps.2024.106958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/12/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Protein Arginine Methyltransferase 1 (PRMT1), a primary protein arginine methyltransferase, plays a pivotal role in cellular regulation, influencing processes such as gene expression, signal transduction, and cell differentiation. Dysregulation of PRMT1 has been linked to the development of various cancers, establishing it as a key target for therapeutic intervention. This review synthesizes the biochemical characteristics, structural domains, and functional mechanisms of PRMT1, focusing on its involvement in tumorigenesis. Additionally, the development and efficacy of emerging PRMT1 inhibitors as potential cancer therapies are examined. By employing molecular modeling and insights from existing literature, this review posits that targeting PRMT1's methyltransferase activity could disrupt cancer progression, providing valuable insights for future drug development.
Collapse
Affiliation(s)
- Shiyao Ma
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, PR China
| | - Shanhui Yi
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, PR China
| | - Hui Zou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, PR China; Oncology Department, The first-affiliated hospital of Hunan normal university, Hunan Provincial People's Hospital, Changsha 410002, PR China.
| | - Shasha Fan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, PR China; Oncology Department, The first-affiliated hospital of Hunan normal university, Hunan Provincial People's Hospital, Changsha 410002, PR China.
| | - Yin Xiao
- Department of Pharmacy, Haikou People's Hospital, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, PR China.
| |
Collapse
|
3
|
Jiang H, Lu C, Wu H, Ding J, Li J, Ding J, Gao Y, Wang G, Luo Q. Decreased cold-inducible RNA-binding protein (CIRP) binding to GluRl on neuronal membranes mediates memory impairment resulting from prolonged hypobaric hypoxia exposure. CNS Neurosci Ther 2024; 30:e70059. [PMID: 39315498 PMCID: PMC11420629 DOI: 10.1111/cns.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
AIM To investigate the molecular mechanisms underlying memory impairment induced by high-altitude (HA) hypoxia, specifically focusing on the role of cold-inducible RNA-binding protein (CIRP) in regulating the AMPA receptor subunit GluR1 and its potential as a therapeutic target. METHODS A mouse model was exposed to 14 days of hypobaric hypoxia (HH), simulating conditions at an altitude of 6000 m. Behavioral tests were conducted to evaluate memory function. The expression, distribution, and interaction of CIRP with GluR1 in neuronal cells were analyzed. The binding of CIRP to GluR1 mRNA and its impact on GluR1 protein expression were examined. Additionally, the role of CIRP in GluR1 regulation was assessed using Cirp knockout mice. The efficacy of the Tat-C16 peptide, which consists of the Tat sequence combined with the CIRP 110-125 amino acid sequence, was also tested for its ability to mitigate HH-induced memory decline. RESULTS CIRP was primarily localized in neurons, with its expression significantly reduced following HH exposure. This reduction was associated with decreased GluR1 protein expression on the cell membrane and increased localization in the cytoplasm. The interaction between CIRP and GluR1 was diminished under HH conditions, leading to reduced GluR1 stability on the cell membrane and increased cytoplasmic relocation. These changes resulted in a decreased number of synapses and dendritic spines, impairing learning and memory functions. Administration of the Tat-C16 peptide effectively ameliorated these impairments by modulating GluR1 expression and distribution in HH-exposed mice. CONCLUSION CIRP plays a critical role in maintaining synaptic integrity under hypoxic conditions by regulating GluR1 expression and distribution. The Tat-C16 peptide shows promise as a therapeutic strategy for alleviating cognitive decline associated with HA hypoxia.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Hypoxic BiomedicineInstitute of Special Environmental Medicine and Co‐innovation Center of Neuroregeneration, Nantong UniversityNantongChina
- College of High‐Altitude Military MedicineInstitute of Medicine and Hygienic Equipment for High Altitude Region, Army Medical UniversityChongqingChina
| | - Chenyan Lu
- Department of Hypoxic BiomedicineInstitute of Special Environmental Medicine and Co‐innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Haoyang Wu
- Department of Hypoxic BiomedicineInstitute of Special Environmental Medicine and Co‐innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Jie Ding
- Department of Hypoxic BiomedicineInstitute of Special Environmental Medicine and Co‐innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Jiayan Li
- Department of Hypoxic BiomedicineInstitute of Special Environmental Medicine and Co‐innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Jianfeng Ding
- Department of Hypoxic BiomedicineInstitute of Special Environmental Medicine and Co‐innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Yuqi Gao
- College of High‐Altitude Military MedicineInstitute of Medicine and Hygienic Equipment for High Altitude Region, Army Medical UniversityChongqingChina
- Key Laboratory of Extreme Environmental Medicine and High‐Altitude Medicine, Ministry of Education of ChinaChongqingChina
| | - Guohua Wang
- Department of Hypoxic BiomedicineInstitute of Special Environmental Medicine and Co‐innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Qianqian Luo
- Department of Hypoxic BiomedicineInstitute of Special Environmental Medicine and Co‐innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| |
Collapse
|
4
|
Li YJ, Zhang C, Martincuks A, Herrmann A, Yu H. STAT proteins in cancer: orchestration of metabolism. Nat Rev Cancer 2023; 23:115-134. [PMID: 36596870 DOI: 10.1038/s41568-022-00537-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 01/04/2023]
Abstract
Reprogrammed metabolism is a hallmark of cancer. However, the metabolic dependency of cancer, from tumour initiation through disease progression and therapy resistance, requires a spectrum of distinct reprogrammed cellular metabolic pathways. These pathways include aerobic glycolysis, oxidative phosphorylation, reactive oxygen species generation, de novo lipid synthesis, fatty acid β-oxidation, amino acid (notably glutamine) metabolism and mitochondrial metabolism. This Review highlights the central roles of signal transducer and activator of transcription (STAT) proteins, notably STAT3, STAT5, STAT6 and STAT1, in orchestrating the highly dynamic metabolism not only of cancer cells but also of immune cells and adipocytes in the tumour microenvironment. STAT proteins are able to shape distinct metabolic processes that regulate tumour progression and therapy resistance by transducing signals from metabolites, cytokines, growth factors and their receptors; defining genetic programmes that regulate a wide range of molecules involved in orchestration of metabolism in cancer and immune cells; and regulating mitochondrial activity at multiple levels, including energy metabolism and lipid-mediated mitochondrial integrity. Given the central role of STAT proteins in regulation of metabolic states, they are potential therapeutic targets for altering metabolic reprogramming in cancer.
Collapse
Affiliation(s)
- Yi-Jia Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Chunyan Zhang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Antons Martincuks
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Andreas Herrmann
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
- Sorrento Therapeutics, San Diego, CA, USA
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
5
|
Lu X, Xin DE, Du JK, Zou QC, Wu Q, Zhang YS, Deng W, Yue J, Fan XS, Zeng Y, Cheng X, Li X, Hou Z, Mohan M, Zhao TC, Lu X, Chang Z, Xu L, Sun Y, Zu X, Zhang Y, Chinn YE. Loss of LOXL2 Promotes Uterine Hypertrophy and Tumor Progression by Enhancing H3K36ac-Dependent Gene Expression. Cancer Res 2022; 82:4400-4413. [PMID: 36197797 DOI: 10.1158/0008-5472.can-22-0848] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/23/2022] [Accepted: 09/30/2022] [Indexed: 02/05/2023]
Abstract
UNLABELLED Lysyl oxidase-like 2 (LOXL2) is a member of the scavenger receptor cysteine-rich (SRCR) repeat carrying LOX family. Although LOXL2 is suspected to be involved in histone association and chromatin modification, the role of LOXL2 in epigenetic regulation during tumorigenesis and cancer progression remains unclear. Here, we report that nuclear LOXL2 associates with histone H3 and catalyzes H3K36ac deacetylation and deacetylimination. Both the N-terminal SRCR repeats and the C-terminal catalytic domain of LOXL2 carry redundant deacetylase catalytic activity. Overexpression of LOXL2 markedly reduced H3K36 acetylation and blocked H3K36ac-dependent transcription of genes, including c-MYC, CCND1, HIF1A, and CD44. Consequently, LOXL2 overexpression reduced cancer cell proliferation in vitro and inhibited xenograft tumor growth in vivo. In contrast, LOXL2 deficiency resulted in increased H3K36 acetylation and aberrant expression of H3K36ac-dependent genes involved in multiple oncogenic signaling pathways. Female LOXL2-deficient mice spontaneously developed uterine hypertrophy and uterine carcinoma. Moreover, silencing LOXL2 in cancer cells enhanced tumor progression and reduced the efficacy of cisplatin and anti-programmed cell death 1 (PD-1) combination therapy. Clinically, low nuclear LOXL2 expression and high H3K36ac levels corresponded to poor prognosis in uterine endometrial carcinoma patients. These results suggest that nuclear LOXL2 restricts cancer development in the female reproductive system via the regulation of H3K36ac deacetylation. SIGNIFICANCE LOXL2 loss reprograms the epigenetic landscape to promote uterine cancer initiation and progression and repress the efficacy of anti-PD-1 immunotherapy, indicating that LOXL2 is a tumor suppressor.
Collapse
Affiliation(s)
- Xufeng Lu
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang; Research Center of Basic Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Dazhuan E Xin
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang
- Research Center of Basic Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
- Institutes of Biology and Medical Sciences, Soochow University Medical College, Jiangsu, China
| | - Juanjuan K Du
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang
- Research Center of Basic Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
- Institutes of Biology and Medical Sciences, Soochow University Medical College, Jiangsu, China
| | - Quanli C Zou
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian Wu
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang; Research Center of Basic Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yanan S Zhang
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang; Research Center of Basic Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
- Institutes of Biology and Medical Sciences, Soochow University Medical College, Jiangsu, China
| | - Wenhai Deng
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang; Research Center of Basic Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jicheng Yue
- Institutes of Biology and Medical Sciences, Soochow University Medical College, Jiangsu, China
| | - Xing S Fan
- Institutes of Biology and Medical Sciences, Soochow University Medical College, Jiangsu, China
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyuan Zeng
- Institutes of Biology and Medical Sciences, Soochow University Medical College, Jiangsu, China
| | - Xiaju Cheng
- Institutes of Biology and Medical Sciences, Soochow University Medical College, Jiangsu, China
| | - Xue Li
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang; Research Center of Basic Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Zhaoyuan Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Man Mohan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting C Zhao
- Departments of Surgery and Medicine, Brown University School of Medicine-Rhode Island Hospital, Providence, Rhode Island
| | - Xiaomei Lu
- Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, Tsinghua University School of Medicine, Beijing, China
| | - Liyan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Yu Sun
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiongbing Zu
- Departments of Urology and Obstetrics and Gynecology, Xiangya Hospital, Central South University, Hunan, China
| | - Yu Zhang
- Departments of Urology and Obstetrics and Gynecology, Xiangya Hospital, Central South University, Hunan, China
| | - Y Eugene Chinn
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang
- Research Center of Basic Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
- Institutes of Biology and Medical Sciences, Soochow University Medical College, Jiangsu, China
| |
Collapse
|
6
|
Ding Y, Hu L, Wang X, Sun Q, Hu T, Liu J, Shen D, Zhang Y, Chen W, Wei C, Liu M, Liu D, Wang P, Zhang C, Zhang J, Li Q, Yang F. The contribution of spinal dorsal horn astrocytes in neuropathic pain at the early stage of EAE. Neurobiol Dis 2022; 175:105914. [DOI: 10.1016/j.nbd.2022.105914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
7
|
Lysyl Oxidase Family Proteins: Prospective Therapeutic Targets in Cancer. Int J Mol Sci 2022; 23:ijms232012270. [PMID: 36293126 PMCID: PMC9602794 DOI: 10.3390/ijms232012270] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
The lysyl oxidase (LOX) family, consisting of LOX and LOX-like proteins 1–4 (LOXL1–4), is responsible for the covalent crosslinking of collagen and elastin, thus maintaining the stability of the extracellular matrix (ECM) and functioning in maintaining connective tissue function, embryonic development, and wound healing. Recent studies have found the aberrant expression or activity of the LOX family occurs in various types of cancer. It has been proved that the LOX family mainly performs tumor microenvironment (TME) remodeling function and is extensively involved in tumor invasion and metastasis, immunomodulation, proliferation, apoptosis, etc. With relevant translational research in progress, the LOX family is expected to be an effective target for tumor therapy. Here, we review the research progress of the LOX family in tumor progression and therapy to provide novel insights for future exploration of relevant tumor mechanism and new therapeutic targets.
Collapse
|
8
|
Xiong T, He P, Zhou M, Zhong D, Yang T, He W, Xu Z, Chen Z, Liu YW, Dai SS. Glutamate blunts cell-killing effects of neutrophils in tumor microenvironment. Cancer Sci 2022; 113:1955-1967. [PMID: 35363928 PMCID: PMC9207372 DOI: 10.1111/cas.15355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022] Open
Abstract
Neutrophils are the first defenders of the innate system for injury and infection. They have gradually been recognized as important participants in tumor initiation and development due to their heterogeneity and plasticity. In the tumor microenvironment (TME), neutrophils can exert antitumor and protumor functions, depending on the surroundings. Tumor cells systemically alter intracellular amino acid (AA) metabolism and extracellular AA distribution to meet their proliferation need, leading to metabolic reprogramming and TME reshaping. However, the underlying mechanisms that determine how altered AAs affect neutrophils in TME are less‐explored. Here, we identified that abundant glutamate releasing from tumor cells blunted neutrophils’ cell‐killing effects toward tumor cells in vitro and in vivo. Mass spectrometric detection, flow cytometry, and western blot experiments proved that increased levels of pSTAT3/RAB10/ARF4, mediated by glutamate, were accompanied with immunosuppressive phenotypes of neutrophils in TME. We also discovered that riluzole, an FDA‐approved glutamate release inhibitor, significantly inhibited tumor growth by restoring neutrophils’ cell‐killing effects and decreasing glutamate secretion from tumor cells. These findings highlight the importance of tumor‐released glutamate on neutrophil transformation in TME, providing new possible cancer treatments targeting altered glutamate metabolism.
Collapse
Affiliation(s)
- Tiantian Xiong
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| | - Ping He
- Department of Cardiac Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, PR China
| | - Mi Zhou
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| | - Dan Zhong
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| | - Teng Yang
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| | - Wenhui He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| | - Zhizhen Xu
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| | - Zongtao Chen
- Health Management Center, Southwest Hospital, Army Medical University, Chongqing, 400038, PR China
| | - Yang-Wuyue Liu
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| | - Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| |
Collapse
|
9
|
Bin YL, Hu HS, Tian F, Wen ZH, Yang MF, Wu BH, Wang LS, Yao J, Li DF. Metabolic Reprogramming in Gastric Cancer: Trojan Horse Effect. Front Oncol 2022; 11:745209. [PMID: 35096565 PMCID: PMC8790521 DOI: 10.3389/fonc.2021.745209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
Worldwide, gastric cancer (GC) represents the fifth most common cancer for incidence and the third leading cause of death in developed countries. Despite the development of combination chemotherapies, the survival rates of GC patients remain unsatisfactory. The reprogramming of energy metabolism is a hallmark of cancer, especially increased dependence on aerobic glycolysis. In the present review, we summarized current evidence on how metabolic reprogramming in GC targets the tumor microenvironment, modulates metabolic networks and overcomes drug resistance. Preclinical and clinical studies on the combination of metabolic reprogramming targeted agents and conventional chemotherapeutics or molecularly targeted treatments [including vascular endothelial growth factor receptor (VEGFR) and HER2] and the value of biomarkers are examined. This deeper understanding of the molecular mechanisms underlying successful pharmacological combinations is crucial in finding the best-personalized treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Yu-Ling Bin
- Department of Rheumatology and Immunology, ZhuZhou Central Hospital, Zhuzhou, China
| | - Hong-Sai Hu
- Department of Gastroenterology, ZhuZhou Central Hospital, Zhuzhou, China
| | - Feng Tian
- Department of Rheumatology and Immunology, ZhuZhou Central Hospital, Zhuzhou, China
| | - Zhen-Hua Wen
- Department of Rheumatology and Immunology, ZhuZhou Central Hospital, Zhuzhou, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen, China
| | - Ben-Hua Wu
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
10
|
Lysine Acetylation, Cancer Hallmarks and Emerging Onco-Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14020346. [PMID: 35053509 PMCID: PMC8773583 DOI: 10.3390/cancers14020346] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Several histone deacetylase inhibitors have been approved by FDA for cancer treatment. Intensive efforts have been devoted to enhancing its anti-cancer efficacy by combining it with various other agents. Yet, no guideline is available to assist in the choice of candidate drugs for combination towards optimal solutions for different clinical problems. Thus, it is imperative to characterize the primary cancer hallmarks that lysine acetylation is associated with and gain knowledge on the key cancer features that each combinatorial onco-therapeutic modality targets to aid in the combinatorial onco-therapeutic design. Cold atmospheric plasma represents an emerging anti-cancer modality via manipulating cellular redox level and has been demonstrated to selectively target several cancer hallmarks. This review aims to delineate the intrinsic connections between lysine acetylation and cancer properties, and forecast opportunities histone deacetylase inhibitors may have when combined with cold atmospheric plasma as novel precision onco-therapies. Abstract Acetylation, a reversible epigenetic process, is implicated in many critical cellular regulatory systems including transcriptional regulation, protein structure, activity, stability, and localization. Lysine acetylation is the most prevalent and intensively investigated among the diverse acetylation forms. Owing to the intrinsic connections of acetylation with cell metabolism, acetylation has been associated with metabolic disorders including cancers. Yet, relatively little has been reported on the features of acetylation against the cancer hallmarks, even though this knowledge may help identify appropriate therapeutic strategies or combinatorial modalities for the effective treatment and resolution of malignancies. By examining the available data related to the efficacy of lysine acetylation against tumor cells and elaborating the primary cancer hallmarks and the associated mechanisms to target the specific hallmarks, this review identifies the intrinsic connections between lysine acetylation and cancer hallmarks and proposes novel modalities that can be combined with HDAC inhibitors for cancer treatment with higher efficacy and minimum adverse effects.
Collapse
|