1
|
Zhao Q, Zhang J, Yang S, Bai X, Li Y, Zhang W, Zhang X. H1N1 swine influenza viruses upregulate NEU1 expression through histone H3 acetylation regulated by HDAC2. Virology 2025; 601:110305. [PMID: 39566266 DOI: 10.1016/j.virol.2024.110305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Mammalian membrane sialic acid is the key receptor for influenza virus. Sialidases, the main type of enzyme that can hydrolyze membrane sialic acids in mammalian cells, have the potential to affect the invasion process of influenza viruses, including H1N1. For the first time, this study focused on the regulation mechanism of sialidase NEU1 expression, and revealed that swine-origin influenza (H1N1) virus infection can promote NEU1 expression through histone H3 acetylation, which is regulated by HDAC2 in host cells. This study not only provides evidence for the regulatory mechanisms of mammalian sialase NEU1 expression, but also provides new insights into the host immune defense response against influenza virus infection.
Collapse
Affiliation(s)
- Qiuyi Zhao
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jie Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Shunli Yang
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xiang Bai
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yongxu Li
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Wenqing Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xiaoqing Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.
| |
Collapse
|
2
|
Zhang Z, Chen X, Li Y, Zhang F, Quan Z, Wang Z, Yang Y, Si W, Xiong Y, Ju J, Bian Y, Sun S. The resistance to anoikis, mediated by Spp1, and the evasion of immune surveillance facilitate the invasion and metastasis of hepatocellular carcinoma. Apoptosis 2024; 29:1564-1583. [PMID: 39066845 PMCID: PMC11416391 DOI: 10.1007/s10495-024-01994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/30/2024]
Abstract
Anoikis-Related Genes (ARGs) lead to the organism manifesting resistance to anoikis and are associated with unfavorable prognostic outcomes across various malignancies.Therefore, it is crucial to identify the pivotal target genes related to anoikis in HCC .We found that ARGs were significantly correlated with prognosis and immune responses in HCC. The core gene, SPP1, notably promoted anoikis resistance and metastasis in HCC through both in vivo and in vitro studies. The PI3K-Akt-mTOR pathway played a critical role in anoikis suppression within HCC contexts. Our research unveiled SPP1's role in enhancing PKCα phosphorylation, which in turn activated the PI3K-Akt-mTOR cascade. Additionally, SPP1 was identified as a key regulator of MDSCs and Tregs migration, directly affecting their immunosuppressive capabilities.These findings indicate that in HCC, SPP1 promoted anoikis resistance and facilitated immune evasion by modulating MDSCs and Tregs.
Collapse
Affiliation(s)
- Zhengwei Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Xiaoning Chen
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yapeng Li
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Feng Zhang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, 150081, China
| | - Zhen Quan
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Zhuo Wang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, 150081, China
| | - Yang Yang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, 150081, China
| | - Wei Si
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, 150081, China
| | - Yuting Xiong
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, 150081, China
| | - Jiaming Ju
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, 150081, China.
| | - Yu Bian
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, 150081, China.
| | - Shibo Sun
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
3
|
Liu D, Li M, Zhao Z, Zhou L, Zhi F, Guo Z, Cui J. Targeting the TRIM14/USP14 Axis Enhances Immunotherapy Efficacy by Inducing Autophagic Degradation of PD-L1. Cancer Res 2024; 84:2806-2819. [PMID: 38924473 DOI: 10.1158/0008-5472.can-23-3971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Immunotherapy has greatly improved cancer treatment in recent years by harnessing the immune system to target cancer cells. The first immunotherapeutic agent approved by the FDA was IFNα. Treatment with IFNα can lead to effective immune activation and attenuate tumor immune evasion, but persistent treatment has been shown to elicit immunosuppressive effects. Here, we identified an autophagy-dependent mechanism by which IFNα triggers tumor immune evasion by upregulating PD-L1 to suppress the antitumor activity of CD8+ T cells. Mechanistically, IFNα increased the transcription of TRIM14, which recruited the deubiquitinase USP14 to inhibit the autophagic degradation of PD-L1. USP14 removed K63-linked ubiquitin chains from PD-L1, impairing its recognition by the cargo receptor p62 (also known as SQSTM1) for subsequent autophagic degradation. Combining the USP14 inhibitor IU1 with IFNα and anti-CTLA4 treatment effectively suppressed tumor growth without significant toxicity. This work suggests a strategy for targeting selective autophagy to abolish PD-L1-mediated cancer immune evasion. Significance: IFNα-induced TRIM14 transcription suppresses antitumor immunity by recruiting USP14 to inhibit autophagic degradation of PD-L1, indicating that targeting this axis could be an effective immunotherapeutic approach for treating cancer.
Collapse
Affiliation(s)
- Di Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Joint Lab of First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Mengqiu Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Joint Lab of First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhiyao Zhao
- Greater Bay Area Institute of Precision Medicine, Guangzhou, China
| | - Liang Zhou
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Joint Lab of First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Feng Zhi
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Zhiyong Guo
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Joint Lab of First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Joint Lab of First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Filipsky F, Läubli H. Regulation of sialic acid metabolism in cancer. Carbohydr Res 2024; 539:109123. [PMID: 38669826 DOI: 10.1016/j.carres.2024.109123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Sialic acid, the terminal structure of cell surface glycans, has essential functions in regulating immune response, cell-to-cell communication, and cell adhesion. More importantly, an increased level of sialic acid, termed hypersialylation, has emerged as a commonly observed phenotype in cancer. Therefore, targeting sialic acid ligands (sialoglycans) and their receptors (Siglecs) may provide a new therapeutic approach for cancer immunotherapy. We highlight the complexity of the sialic acid metabolism and its involvement in malignant transformation within individual cancer subtypes. In this review, we focus on the dysregulation of sialylation, the intricate nature of sialic acid synthesis, and clinical perspective. We aim to provide a brief insight into the mechanism of hypersialylation and how our understanding of these processes can be leveraged for the development of novel therapeutics.
Collapse
Affiliation(s)
- Filip Filipsky
- Department of Biomedicine, University Hospital and University of Basel, Switzerland
| | - Heinz Läubli
- Department of Biomedicine, University Hospital and University of Basel, Switzerland; Division of Oncology, University Hospital Basel, Switzerland.
| |
Collapse
|
5
|
Xie N, Mei S, Dai C, Chen W. HDAC1-Mediated Downregulation of NEU1 Exacerbates the Aggressiveness of Cervical Cancer. Crit Rev Eukaryot Gene Expr 2024; 34:45-54. [PMID: 38505872 DOI: 10.1615/critreveukaryotgeneexpr.2023051396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
HDAC1 functions as an oncogene in multi-type cancers. This study aimed to investigate the roles of histone deacetylase 1 (HDAC1) in cervical cancer (CC). mRNA expression was determined using reverse transcription quantitative polymerase chain reaction. The protein-protein complexes was analyzed using co-immunoprecipitation assay. The binding sites between NRF2 and NEU1 were confirmed by chromatin immunoprecipitation assay. Cell viability was detected by CCK-8. Cell proliferation was measured using CCK-8 and colony formation assays. Cell migrative and invasive ability were determined using transwell assay. We found that HDAC1 was upregulated in CC patients and cells. Trichostatin A (TSA) treatment decreased the number of colonies and migrated and invaded cells. Moreover, HDAC1 interacted with NRF2 to downregulate NEU1 expression. NEU1 knockdown attenuated the effects of TSA and enhanced the aggressiveness of CC cells. In conclusion, HDAC1 functions as an oncogene in CC. Targeting HDAC1 may be an alternative strategy for CC.
Collapse
Affiliation(s)
- Nanzi Xie
- Department of Pathology, People's Hospital of Anshun City Guizhou Province, Anshun 561000, Guizhou, China
| | - Sisi Mei
- Department of Pathology, People's Hospital of Anshun City Guizhou Province, Anshun 561000, Guizhou, China
| | - Changlan Dai
- Department of Pathology, People's Hospital of Anshun City Guizhou Province, Anshun 561000, Guizhou, China
| | - Wei Chen
- People's Hospital of Anshun City Guizhou Province
| |
Collapse
|
6
|
Dai W, Wu G, Liu K, Chen Q, Tao J, Liu H, Shen M. Lactate promotes myogenesis via activating H3K9 lactylation-dependent up-regulation of Neu2 expression. J Cachexia Sarcopenia Muscle 2023; 14:2851-2865. [PMID: 37919243 PMCID: PMC10751423 DOI: 10.1002/jcsm.13363] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Lactate, a glycolytic metabolite mainly produced in muscles, has been suggested to regulate myoblast differentiation, although the underlying mechanism remains elusive. Recently, lactate-mediated histone lactylation is identified as a novel epigenetic modification that promotes gene transcription. METHODS We used mouse C2C12 cell line and 2-month-old male mice as in vitro and in vivo models, respectively. These models were treated with lactate to explore the biological function and latent mechanism of lactate-derived histone lactylation on myogenic differentiation by quantitative real-time PCR, western blotting, immunofluorescence staining, chromatin immunoprecipitation, cleavage under targets and tagmentation assay and RNA sequencing. RESULTS Using immunofluorescence staining and western blotting, we proposed that lactylation might occur in the histones. Inhibition of lactate production or intake both impaired myoblast differentiation, accompanied by diminished lactylation in the histones. Using lactylation site-specific antibodies, we demonstrated that lactate preferentially increased H3K9 lactylation (H3K9la) during myoblast differentiation (CT VS 5, 10, 15, 20, 25 mM lactate treatment, P = 0.0012, P = 0.0007, and the rest of all P < 0.0001). Notably, inhibiting H3K9la using P300 antagonist could block lactate-induced myogenesis. Through combined omics analysis using cleavage under targets and tagmentation assay and RNA sequencing, we further identified Neu2 as a potential target gene of H3K9la. IGV software analysis (P = 0.0013) and chromatin immunoprecipitation-qPCR assay (H3K9la %Input, LA group = 9.0076, control group = 2.7184, IgG = 0.3209) confirmed that H3K9la is enriched in the promoter region of Neu2. Moreover, siRNAs or inhibitors against Neu2 both abrogated myoblast differentiation despite lactate treatment, suggesting that Neu2 is required for lactate-mediated myoblast differentiation. CONCLUSIONS Our findings provide novel understanding of histone lysine lactylation, suggesting its role in myogenesis, and as potential therapeutic targets for muscle diseases.
Collapse
Affiliation(s)
- Weilong Dai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Gang Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Ke Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Qianqian Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Jingli Tao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Ming Shen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
7
|
Zeng S, Wen Y, Yu C. Desialylation of ATG5 by sialidase (NEU1) promotes macrophages autophagy and exacerbates inflammation under hypoxia. Cell Signal 2023; 112:110927. [PMID: 37844713 DOI: 10.1016/j.cellsig.2023.110927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
During the process of atherosclerosis (AS), hypoxia induces plaque macrophage inflammation, promoting lipid accumulation. Autophagy is a cell homeostasis process that increases tolerance to stressors like oxidative stress and hypoxia. However, the specific mechanism by which hypoxia initiates autophagy and the inflammation of macrophages remains to be elucidated. Here, we found that hypoxia-induced macrophage inflammation was mediated by autophagy. Then, the effect of hypoxia on autophagy was investigated in terms of post-translational modifications of proteins. The results showed that desialylation of the autophagy protein ATG5 under hypoxic conditions enhanced protein stability by affecting its charge effect and promoted the formation of the ATG5-ATG12-ATG16L complex, further increasing autophagosome formation. And NEU1, a key enzyme in sialic acid metabolism, was significantly up-regulated under hypoxic conditions and was identified as an interacting protein of ATG5, affecting the sialylation of ATG5. In addition, the knockdown or inhibition of NEU1 reversed hypoxia-induced autophagy and inflammatory responses. In conclusion, our data reveal a key mechanism of autophagy regulation under hypoxia involving ATG5 sialylation and NEU1, suggesting that NEU1 may be a potential target for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Shengmei Zeng
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing 400016, China
| | - Yilin Wen
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing 400016, China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing 400016, China.
| |
Collapse
|
8
|
Zhou X, Chi K, Zhang C, Liu Q, Yang G. Sialylation: A Cloak for Tumors to Trick the Immune System in the Microenvironment. BIOLOGY 2023; 12:832. [PMID: 37372117 DOI: 10.3390/biology12060832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
The tumor microenvironment (TME), where the tumor cells incite the surrounding normal cells to create an immune suppressive environment, reduces the effectiveness of immune responses during cancer development. Sialylation, a type of glycosylation that occurs on cell surface proteins, lipids, and glycoRNAs, is known to accumulate in tumors and acts as a "cloak" to help tumor cells evade immunological surveillance. In the last few years, the role of sialylation in tumor proliferation and metastasis has become increasingly evident. With the advent of single-cell and spatial sequencing technologies, more research is being conducted to understand the effects of sialylation on immunity regulation. This review provides updated insights into recent research on the function of sialylation in tumor biology and summarizes the latest developments in sialylation-targeted tumor therapeutics, including antibody-mediated and metabolic-based sialylation inhibition, as well as interference with sialic acid-Siglec interaction.
Collapse
Affiliation(s)
- Xiaoman Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kaijun Chi
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chairui Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Quan Liu
- Department of Medical Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Ganglong Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Fu R, Jiang X, Yang Y, Wang C, Zhang Y, Zhu Y, Zhang H. Bidirectional regulation of structural damage on autophagy in the C. elegans epidermis. Autophagy 2022; 18:2731-2745. [PMID: 35311461 PMCID: PMC9629849 DOI: 10.1080/15548627.2022.2047345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/15/2022] Open
Abstract
A variety of disturbances such as starvation, organelle damage, heat stress, hypoxia and pathogen infection can influence the autophagic process. However, how the macroautophagy/autophagy machinery is regulated intrinsically by structural damage of the cell remains largely unknown. In this work, we utilized the C. elegans epidermis as the model to address this question. Our results showed that structural damage by mechanical wounding exerted proximal inhibitory effect and distant promotional effect on autophagy within the same epidermal cell. By disrupting individual mechanical supporting structures, we found that only damage of the basal extracellular matrix or the underlying muscle cells activated a distinct autophagic response in the epidermis. On the contrary, structural disruption of the epidermal cells at the apical side inhibited autophagy activation caused by different stress factors. Mechanistic studies showed that the basal promotional effect of structural damage on epidermal autophagy was mediated by a mechanotransduction pathway going through the basal hemidesmosome receptor and LET-363/MTOR, while the apical inhibitory effect was mostly carried out by activation of calcium signaling. Elevated autophagy in the epidermis played a detrimental rather than a beneficial role on cell survival against structural damage. The results obtained from these studies will not only help us better understand the pathogenesis of structural damage- and autophagy-related diseases, but also provide insight into more generic rules of autophagy regulation by the structural and mechanical properties of cells across species.Abbreviations : ATG: autophagy related; BLI-1: BLIstered cuticle 1; CeHDs: C. elegans hemidesmosomes; COL-19: COLlagen 19; DPY-7: DumPY 7; ECM: extracellular matrix; EPG-5: ectopic PGL granules 5; GFP: green fluorescent protein; GIT-1: GIT1 (mammalian G protein-coupled receptor kinase InTeractor 1) homolog; GTL-2: Gon-Two Like 2 (TRP subfamily); HIS-58, HIStone 58; IFB-1: Intermediate Filament, B 1; LET: LEThal; LGG-1: LC3, GABARAP and GATE-16 family 1; MTOR: mechanistic target of rapamycin; MTORC1: MTOR complex 1; MUP-4: MUscle Positioning 4; NLP-29: Neuropeptide-Like Protein 29; PAT: Paralyzed Arrest at Two-fold; PIX-1: PIX (PAK (p21-activated kinase) Interacting eXchange factor) homolog 1; RFP: red fluorescent protein; RNAi: RNA interference; SQST-1: SeQueSTosome related 1; UNC: UNCoordinated; UV: ultraviolet; VAB-10: variable ABnormal morphology 10; WT: wild type.
Collapse
Affiliation(s)
- Rong Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiaowan Jiang
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yuyan Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Chunxia Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yun Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yi Zhu
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Huimin Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Keil J, Rafn GR, Turan IM, Aljohani MA, Sahebjam-Atabaki R, Sun XL. Sialidase Inhibitors with Different Mechanisms. J Med Chem 2022; 65:13574-13593. [PMID: 36252951 PMCID: PMC9620260 DOI: 10.1021/acs.jmedchem.2c01258] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Sialidases, or neuraminidases, are enzymes that catalyze the hydrolysis of sialic acid (Sia)-containing molecules, mostly removal of the terminal Sia (desialylation). By desialylation, sialidase can modulate the functionality of the target compound and is thus often involved in biological pathways. Inhibition of sialidases with inhibitors is an important approach for understanding sialidase function and the underlying mechanisms and could serve as a therapeutic approach as well. Transition-state analogues, such as anti-influenza drugs oseltamivir and zanamivir, are major sialidase inhibitors. In addition, difluoro-sialic acids were developed as mechanism-based sialidase inhibitors. Further, fluorinated quinone methide-based suicide substrates were reported. Sialidase product analogue inhibitors were also explored. Finally, natural products have shown competitive inhibiton against viral, bacterial, and human sialidases. This Perspective describes sialidase inhibitors with different mechanisms and their activities and future potential, which include transition-state analogue inhibitors, mechanism-based inhibitors, suicide substrate inhibitors, product analogue inhibitors, and natural product inhibitors.
Collapse
Affiliation(s)
- Joseph
M. Keil
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Garrett R. Rafn
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Isaac M. Turan
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Majdi A. Aljohani
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Reza Sahebjam-Atabaki
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Xue-Long Sun
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| |
Collapse
|
11
|
Chen J, Wei Z, Fu K, Duan Y, Zhang M, Li K, Guo T, Yin R. Non-apoptotic cell death in ovarian cancer: Treatment, resistance and prognosis. Biomed Pharmacother 2022; 150:112929. [PMID: 35429741 DOI: 10.1016/j.biopha.2022.112929] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer is mostly diagnosed at an advanced stage due to the absence of effective screening methods and specific symptoms. Repeated chemotherapy resistance and recurrence before PARPi are used as maintenance therapies, lead to low survival rates and poor prognosis. Apoptotic cell death plays a crucial role in ovarian cancer, which is proved by current researches. With the ongoing development of targeted therapy, non-apoptotic cell death has shown substantial potential in tumor prevention and treatment, including autophagy, ferroptosis, necroptosis, immunogenic cell death, pyroptosis, alkaliptosis, and other modes of cell death. We systematically reviewed the research progress on the role of non-apoptotic cell death in the onset, development, and outcome of ovarian cancer. This review provides a more theoretical basis for exploring therapeutic targets, reversing drug resistance in refractory ovarian cancer, and establishing risk prediction models that help realize the clinical transformation of vital drugs.
Collapse
Affiliation(s)
- Jinghong Chen
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Zhichen Wei
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Kaiyu Fu
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yuanqiong Duan
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mengpei Zhang
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Kemin Li
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Tao Guo
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Rutie Yin
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
12
|
Du A, Li S, Zhou Y, Disoma C, Liao Y, Zhang Y, Chen Z, Yang Q, Liu P, Liu S, Dong Z, Razzaq A, Tao S, Chen X, Liu Y, Xu L, Zhang Q, Li S, Peng J, Xia Z. M6A-mediated upregulation of circMDK promotes tumorigenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. Mol Cancer 2022; 21:109. [PMID: 35524319 PMCID: PMC9074191 DOI: 10.1186/s12943-022-01575-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/07/2022] [Indexed: 12/14/2022] Open
Abstract
Background Emerging evidence suggest the critical role of circular RNAs (circRNAs) in disease development especially in various cancers. However, the oncogenic role of circRNAs in hepatocellular carcinoma (HCC) is still largely unknown. Methods RNA sequencing was performed to identify significantly upregulated circRNAs in paired HCC tissues and non-tumor tissues. CCK-8 assay, colony formation, transwell, and xenograft mouse models were used to investigate the role of circRNAs in HCC proliferation and metastasis. Small interfering RNA (siRNA) was used to silence gene expression. RNA immunoprecipitation, biotin pull-down, RNA pull-down, luciferase reporter assay and western blot were used to explore the underlying molecular mechanisms. Results Hsa_circ_0095868, derived from exon 5 of the MDK gene (named circMDK), was identified as a new oncogenic circRNA that was significantly upregulated in HCC. The upregulation of circMDK was associated with the modification of N6-methyladenosine (m6A) and poor survival in HCC patients. Mechanistically, circMDK sponged miR-346 and miR-874-3p to upregulate ATG16L1 (Autophagy Related 16 Like 1), resulting to the activation of PI3K/AKT/mTOR signaling pathway to promote cell proliferation, migration and invasion. Poly (β-amino esters) (PAEs) were synthesized to assist the delivery of circMDK siRNA (PAE-siRNA), which effectively inhibited tumor progression without obvious adverse effects in four liver tumor models including subcutaneous, metastatic, orthotopic and patient-derived xenograft (PDX) models. Conclusions CircMDK could serve as a potential tumor biomarker that promotes the progression of HCC via the miR-346/874-3p-ATG16L1 axis. The PAE-based delivery of siRNA improved the stability and efficiency of siRNA targeting circMDK. The PAE-siRNA nanoparticles effectively inhibited HCC proliferation and metastasis in vivo. Our current findings offer a promising nanotherapeutic strategy for the treatment of HCC. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01575-z.
Collapse
Affiliation(s)
- Ashuai Du
- Department of Cell Biology, School of Life Sciences, Central South University, Tongzipo Road, Changsha, 410013, China.,Department of Infection Diseases, Guizhou Provincial People's Hospital, Guizhou, 550000, Guiyang, China
| | - Shiqin Li
- Department of Cell Biology, School of Life Sciences, Central South University, Tongzipo Road, Changsha, 410013, China
| | - Yuzheng Zhou
- Department of Cell Biology, School of Life Sciences, Central South University, Tongzipo Road, Changsha, 410013, China
| | - Cyrollah Disoma
- Department of Cell Biology, School of Life Sciences, Central South University, Tongzipo Road, Changsha, 410013, China
| | - Yujie Liao
- Department of Cell Biology, School of Life Sciences, Central South University, Tongzipo Road, Changsha, 410013, China
| | - Yongxing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Tongzipo Road, Changsha, 410013, China
| | - Zongpeng Chen
- Department of Cell Biology, School of Life Sciences, Central South University, Tongzipo Road, Changsha, 410013, China
| | - Qinglong Yang
- Department of General Surgery, Guizhou Provincial People's Hospital, Guizhou, 550000, Guiyang, China
| | - Pinjia Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Tongzipo Road, Changsha, 410013, China
| | - Sixu Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Tongzipo Road, Changsha, 410013, China
| | - Zijun Dong
- Department of Cell Biology, School of Life Sciences, Central South University, Tongzipo Road, Changsha, 410013, China
| | - Aroona Razzaq
- Department of Cell Biology, School of Life Sciences, Central South University, Tongzipo Road, Changsha, 410013, China
| | - Siyi Tao
- Department of Cell Biology, School of Life Sciences, Central South University, Tongzipo Road, Changsha, 410013, China
| | - Xuan Chen
- Department of Cell Biology, School of Life Sciences, Central South University, Tongzipo Road, Changsha, 410013, China
| | - Yuxin Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Tongzipo Road, Changsha, 410013, China
| | - Lunan Xu
- Department of Cell Biology, School of Life Sciences, Central South University, Tongzipo Road, Changsha, 410013, China
| | - Qianjun Zhang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Shanni Li
- Department of Cell Biology, School of Life Sciences, Central South University, Tongzipo Road, Changsha, 410013, China
| | - Jian Peng
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zanxian Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Tongzipo Road, Changsha, 410013, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, China.
| |
Collapse
|
13
|
Pang Y, Yao Y, Yang M, Wu D, Ma Y, Zhang Y, Zhang T. TFEB-lysosome pathway activation is associated with different cell death responses to carbon quantum dots in Kupffer cells and hepatocytes. Part Fibre Toxicol 2022; 19:31. [PMID: 35477523 PMCID: PMC9047349 DOI: 10.1186/s12989-022-00474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/19/2022] [Indexed: 12/02/2022] Open
Abstract
Background Carbon dot has been widely used in biomedical field as a kind of nanomaterial with low toxicity and high biocompatibility. CDs has demonstrated its unique advantages in assisted drug delivery, target diagnosis and targeted therapy with its small size and spontaneous fluorescence. However, the potential biosafety of CDs cannot be evaluated. Therefore, we focused on the study of liver, the target organ involved in CDs metabolism, to evaluate the risk of CDs in vitro. Methods and results Liver macrophage KUP5 cells and normal liver cells AML12 cells were incubated in CDs at the same concentration for 24 h to compare the different effects under the same exposure conditions. The study found that both liver cell models showed ATP metabolism disorder, membrane damage, autophagosome formation and lysosome damage, but the difference was that, KUP5 cells exhibited more serious damage than AML12 cells, suggesting that immunogenic cell type is particularly sensitive to CDs. The underlying mechanism of CDs-induced death of the two hepatocyte types were also assessed. In KUP5 cells, death was caused by inhibition of autophagic flux caused by autophagosome accumulation, this process that was reversed when autophagosome accumulation was prevented by 3-MA. AML12 cells had no such response, suggesting that the accumulation of autophagosomes caused by CDs may be specific to macrophages. Conclusion Activation of the TFEB-lysosome pathway is important in regulating autophagy and apoptosis. The dual regulation of ERK and mTOR phosphorylation upstream of TFEB influences the death outcome of AML12 cells. These findings provide a new understanding of how CDs impact different liver cells and contribute to a more complete toxicological safety evaluation of CDs.
Collapse
Affiliation(s)
- Yanting Pang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ying Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.,Yangzhou Center for Disease Prevention and Control, Yangzhou, 225200, Jiangsu, China
| | - Mengran Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Daming Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ying Ma
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
14
|
Lillehoj EP, Luzina IG, Atamas SP. Mammalian Neuraminidases in Immune-Mediated Diseases: Mucins and Beyond. Front Immunol 2022; 13:883079. [PMID: 35479093 PMCID: PMC9035539 DOI: 10.3389/fimmu.2022.883079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Mammalian neuraminidases (NEUs), also known as sialidases, are enzymes that cleave off the terminal neuraminic, or sialic, acid resides from the carbohydrate moieties of glycolipids and glycoproteins. A rapidly growing body of literature indicates that in addition to their metabolic functions, NEUs also regulate the activity of their glycoprotein targets. The simple post-translational modification of NEU protein targets-removal of the highly electronegative sialic acid-affects protein folding, alters protein interactions with their ligands, and exposes or covers proteolytic sites. Through such effects, NEUs regulate the downstream processes in which their glycoprotein targets participate. A major target of desialylation by NEUs are mucins (MUCs), and such post-translational modification contributes to regulation of disease processes. In this review, we focus on the regulatory roles of NEU-modified MUCs as coordinators of disease pathogenesis in fibrotic, inflammatory, infectious, and autoimmune diseases. Special attention is placed on the most abundant and best studied NEU1, and its recently discovered important target, mucin-1 (MUC1). The role of the NEU1 - MUC1 axis in disease pathogenesis is discussed, along with regulatory contributions from other MUCs and other pathophysiologically important NEU targets.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Irina G. Luzina
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Research Service, Baltimore Veterans Affairs (VA) Medical Center, Baltimore, MD, United States
| | - Sergei P. Atamas
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
15
|
Ha JH, Jayaraman M, Yan M, Dhanasekaran P, Isidoro C, Song YS, Dhanasekaran DN. Identification of GNA12-driven gene signatures and key signaling networks in ovarian cancer. Oncol Lett 2021; 22:719. [PMID: 34429759 PMCID: PMC8371953 DOI: 10.3892/ol.2021.12980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
With the focus on defining the oncogenic network stimulated by lysophosphatidic acid (LPA) in ovarian cancer, the present study sought to interrogate the oncotranscriptome regulated by the LPA-mediated signaling pathway. LPA, LPA-receptor (LPAR) and LPAR-activated G protein 12 α-subunit, encoded by G protein subunit α 12 (GNA12), all serve an important role in ovarian cancer progression. While the general signaling mechanism regulated by LPA/LPAR/GNA12 has previously been characterized, the global transcriptomic network regulated by GNA12 in ovarian cancer pathophysiology remains largely unknown. To define the LPA/LPAR/GNA12-orchestrated oncogenic networks in ovarian cancer, transcriptomic and bioinformatical analyses were conducted using SKOV3 cells, in which the expression of GNA12 was silenced. Array analysis was performed in Agilent SurePrint G3 Human Comparative Genomic Hybridization 8×60 microarray platform. The array results were validated using Kuramochi cells. Gene and functional enrichment analyses were performed using Database for Annotation, Visualization and Integrated Discovery, Search Tool for Retrieval of Interacting Genes and Cytoscape algorithms. The results indicated a paradigm in which GNA12 drove ovarian cancer progression by upregulating a pro-tumorigenic network with AKT1, VEGFA, TGFB1, BCL2L1, STAT3, insulin-like growth factor 1 and growth hormone releasing hormone as critical hub and/or bottleneck nodes. Moreover, GNA12 downregulated a growth-suppressive network involving proteasome 20S subunit (PSM) β6, PSM α6, PSM ATPase 5, ubiquitin conjugating enzyme E2 E1, PSM non-ATPase 10, NDUFA4 mitochondrial complex-associated, NADH:ubiquinone oxidoreductase subunit B8 and anaphase promoting complex subunit 1 as hub or bottleneck nodes. In addition to providing novel insights into the LPA/LPAR/GNA12-regulated oncogenic networks in ovarian cancer, the present study identified several potential nodes in this network that could be assessed for targeted therapy.
Collapse
Affiliation(s)
- Ji-Hee Ha
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Muralidharan Jayaraman
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Mingda Yan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Padmaja Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, University of Eastern Piedmont, I-17-28100 Novara, Italy
| | - Yong-Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul 151-921, Republic of Korea
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| |
Collapse
|