1
|
Hartl L, Duitman J, Aberson HL, Medema JP, Bijlsma MF, Spek CA. Identification of C/EBPδ-Modifying Compounds as Potential Anticancer Agents Using a High-Throughput Drug Screen. J Cell Mol Med 2025; 29:e70287. [PMID: 39887610 PMCID: PMC11783153 DOI: 10.1111/jcmm.70287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 02/01/2025] Open
Abstract
CCAAT/enhancer-binding protein delta (C/EBPδ) has been shown to promote tumour growth, drug resistance and metastasis formation in some cancers, whereas we have shown that its re-expression limits the features of tumour progression in pancreatic ductal adenocarcinoma (PDAC). The pharmacological targeting-either activation or inhibition-of C/EBPδ may therefore harbour clinical relevance and is desirable for preclinical studies on C/EBPδ in different contexts. Regrettably, to date, only few molecules have been identified that modify C/EBPδ. Here, we present a high-throughput compound screen in conjunction with a novel eGFP reporter to identify further compounds that either increase or decrease C/EBPδ transcriptional activity. Of 1402 small molecule inhibitors, we identified a total of 22 potent inducers and 18 inhibitors of C/EBPδ-mediated eGFP fluorescence. Using pathway enrichment analysis, we found that, generally, inhibition of the cell cycle elicits an increase in C/EBPδ activity whereas PI3K/Akt/mTOR-targeting compounds reduce C/EBPδ activity. We confirmed the potential importance of cell cycle-mediated regulation of C/EBPδ by showing that four of the most potent C/EBPδ activators-R547, PHA793387, AZD5438 and AT7519, all multi-cyclin-dependent kinase (CDK) inhibitors-limited the clonal expansion of PDAC cells. Next to providing a valuable selection of C/EBPδ-modulating compounds for the use in preclinical studies, this report contributes to our understanding of the molecular regulatory mechanisms of C/EBPδ in general and in PDAC in particular.
Collapse
Affiliation(s)
- Leonie Hartl
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Cancer Biology and ImmunologyCancer Center AmsterdamAmsterdamThe Netherlands
| | - JanWillem Duitman
- Department of Pulmonary MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Department of Experimental ImmunologyAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Inflammatory DiseasesAmsterdam Infection & ImmunityAmsterdamThe Netherlands
| | - Hella L. Aberson
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Cancer Biology and ImmunologyCancer Center AmsterdamAmsterdamThe Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Cancer Biology and ImmunologyCancer Center AmsterdamAmsterdamThe Netherlands
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Cancer Biology and ImmunologyCancer Center AmsterdamAmsterdamThe Netherlands
| | - C. Arnold Spek
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Cancer Biology and ImmunologyCancer Center AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
2
|
Alkon N, Chennareddy S, Cohenour ER, Ruggiero JR, Stingl G, Bangert C, Rindler K, Bauer WM, Weninger W, Griss J, Jonak C, Brunner PM. Single-cell sequencing delineates T-cell clonality and pathogenesis of the parapsoriasis disease group. J Allergy Clin Immunol 2025; 155:461-478. [PMID: 39278361 DOI: 10.1016/j.jaci.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/30/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Mycosis fungoides (MF), the most common cutaneous T-cell lymphoma, is often underdiagnosed in early stages because of similarities with benign dermatoses such as atopic dermatitis (AD). Furthermore, the delineation from what is called "parapsoriasis en plaque", a disease that can appear either in a small- or large-plaque form, is still controversial. OBJECTIVE We sought to characterize the parapsoriasis disease spectrum. METHODS We performed single-cell RNA sequencing of skin biopsies from patients within the parapsoriasis-to-early-stage MF spectrum, stratified for small and large plaques, and compared them to AD, psoriasis, and healthy control skin. RESULTS Six of 8 large-plaque lesions harbored either an expanded alpha/beta or gamma/delta T-cell clone with downregulation of CD7 expression, consistent with a diagnosis of early-stage MF. In contrast, 6 of 7 small-plaque lesions were polyclonal in nature, thereby lacking a lymphomatous phenotype, and also revealed a less inflammatory microenvironment than early-stage MF or AD. Of note, polyclonal small- and large-plaque lesions characteristically harbored a population of NPY+ innate lymphoid cells and displayed a stromal signature of complement upregulation and antimicrobial hyperresponsiveness in fibroblasts and sweat gland cells, respectively. These conditions were clearly distinct from AD or psoriasis, which uniquely harbored CD3+CRTH2+ IL-13 expressing "TH2A" cells, or strong type 17 inflammation, respectively. CONCLUSION These data position polyclonal small- and large-plaque parapsoriasis lesions as a separate disease entity that characteristically harbors a so far undescribed innate lymphoid cell population. We thus propose a new term, "polyclonal parapsoriasis en plaque", for this kind of lesion because they can be clearly differentiated from early- and advanced-stage MF, psoriasis, and AD on several cellular and molecular levels.
Collapse
Affiliation(s)
- Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sumanth Chennareddy
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emry R Cohenour
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John R Ruggiero
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Georg Stingl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christine Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Katharina Rindler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang M Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
3
|
Chen L, Zhang H, Gao K, Meng F, Yang F, Li J, Wang L, Tai J. Investigation of the correlation between AGRN expression and perineural invasion in colon cancer. Front Mol Biosci 2024; 11:1510478. [PMID: 39691475 PMCID: PMC11649504 DOI: 10.3389/fmolb.2024.1510478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
Background and Purpose Colon cancer is one of the most common gastrointestinal malignancies. According to the traditional view, the primary modes of transmission include direct dissemination, hematogenous metastasis, and lymph node metastasis. In recent years, the role of perineural invasion (PNI) in the spread and metastasis of tumors has received immense attention. However, there are still relatively few reports on the potential mechanisms and biomarkers of PNI occurrence and development in colon cancer. Method We identified genes linked to the onset and progression of PNI in colon cancer using bioinformatics tools and extensive databases. Gene function enrichment analysis was used to explore the potential roles of these genes in tumor proliferation, invasion, and PNI. A collection of postoperative pathological specimens from colon cancer patients who underwent surgery, related clinicopathological data, and immunohistochemistry were used to validate AGRN expression in PNI tissues. Results Bioinformatics analysis revealed that AGRN is overexpressed in colon cancer tissues and correlates with poor patient prognosis. The findings from gene association and enrichment studies indicate that AGRN and its associated genes may play a role in PNI development and progression in colon cancer by simultaneously enhancing tumor cell invasion and neural cell growth. Immunohistochemical analysis of clinical samples confirmed that AGRN expression is elevated in colon cancer tissues with PNI. Conclusion We found that AGRN is significantly overexpressed in colon cancer tissues exhibiting PNI and is linked to poor patient survival. AGRN and its related genes may contribute to PNI by promoting tumor cell invasion and neural cell growth. Hence, AGRN may play a crucial role in the initiation and progression of PNI in colon cancer.
Collapse
Affiliation(s)
- Lei Chen
- Department of Colorectal and Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Haijia Zhang
- Department of Colorectal and Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Kaiyue Gao
- Department of Colorectal and Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Fanqi Meng
- Department of Colorectal and Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Funing Yang
- Pediatric Outpatient Clinic, The First Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Lijie Wang
- Department of Colorectal and Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Jiandong Tai
- Department of Colorectal and Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Todtenhaupt P, Kuipers TB, Dijkstra KL, Voortman LM, Franken LA, Spekman JA, Jonkman TH, Groene SG, Roest AA, Haak MC, Verweij EJT, van Pel M, Lopriore E, Heijmans BT, van der Meeren LE. Twisting the theory on the origin of human umbilical cord coiling featuring monozygotic twins. Life Sci Alliance 2024; 7:e202302543. [PMID: 38830769 PMCID: PMC11147950 DOI: 10.26508/lsa.202302543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
The human umbilical cord (hUC) is the lifeline that connects the fetus to the mother. Hypercoiling of the hUC is associated with pre- and perinatal morbidity and mortality. We investigated the origin of hUC hypercoiling using state-of-the-art imaging and omics approaches. Macroscopic inspection of the hUC revealed the helices to originate from the arteries rather than other components of the hUC. Digital reconstruction of the hUC arteries showed the dynamic alignment of two layers of muscle fibers in the tunica media aligning in opposing directions. We observed that genetically identical twins can be discordant for hUC coiling, excluding genetic, many environmental, and parental origins of hUC coiling. Comparing the transcriptomic and DNA methylation profile of the hUC arteries of four twin pairs with discordant cord coiling, we detected 28 differentially expressed genes, but no differentially methylated CpGs. These genes play a role in vascular development, cell-cell interaction, and axis formation and may account for the increased number of hUC helices. When combined, our results provide a novel framework to understand the origin of hUC helices in fetal development.
Collapse
Affiliation(s)
- Pia Todtenhaupt
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Thomas B Kuipers
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Kyra L Dijkstra
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Lenard M Voortman
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Laura A Franken
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Jip A Spekman
- Neonatology, Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Thomas H Jonkman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Sophie G Groene
- Neonatology, Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Arno Aw Roest
- Pediatric Cardiology, Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Monique C Haak
- Department of Obstetrics, Division of Fetal Therapy, Leiden University Medical Center, Leiden, Netherlands
| | - EJoanne T Verweij
- Department of Obstetrics, Division of Fetal Therapy, Leiden University Medical Center, Leiden, Netherlands
| | - Melissa van Pel
- NecstGen, Leiden, Netherlands
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Enrico Lopriore
- Neonatology, Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Lotte E van der Meeren
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
5
|
Chang SS, Cheng CC, Chen YR, Chen FW, Cheng YM, Wang JM. Epithelial CEBPD activates fibronectin and enhances macrophage adhesion in renal ischemia-reperfusion injury. Cell Death Discov 2024; 10:328. [PMID: 39025831 PMCID: PMC11258324 DOI: 10.1038/s41420-024-02082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) is a cause of acute kidney injury in patients after renal transplantation and leads to high morbidity and mortality. Damaged kidney resident cells release cytokines and chemokines, which rapidly recruit leukocytes. Fibronectin (FN-1) contributes to immune cell migration, adhesion and growth in inflamed tissues. CCAAT/enhancer-binding protein delta is responsive to inflammatory cytokines and stresses and plays functional roles in cell motility, extracellular matrix production and immune responses. We found that the expression of CCAAT/enhancer-binding protein delta was increased in renal epithelial cells in IRI mice compared with sham mice. Following IRI, the colocalization of FN-1 with the macrophage marker F4/80 was increased in renal injury model wild-type mice but was significantly attenuated in Cebpd-deficient mice. Inactivation of CEBPD can repress hypoxia-induced FN-1 expression in HK-2 cells. Moreover, the inactivation of CEBPD and FN-1 also reduces macrophage accumulation in HK-2 cells. These findings suggest that the involvement of CEBPD in macrophage accumulation through the activation of FN-1 expression and the inhibition of CEBPD can protect against renal IRI.
Collapse
Affiliation(s)
- Shen-Shin Chang
- Division of Transplantation, Department of Surgery, National Chung Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chao-Chun Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Ren Chen
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Feng-Wei Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ya-Min Cheng
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, 700, Taiwan.
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
6
|
Liu W. The Involvement of Cysteine-X-Cysteine Motif Chemokine Receptors in Skin Homeostasis and the Pathogenesis of Allergic Contact Dermatitis and Psoriasis. Int J Mol Sci 2024; 25:1005. [PMID: 38256077 PMCID: PMC10815665 DOI: 10.3390/ijms25021005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Members of the C-X-C motif chemokine receptor (CXCR) superfamily play central roles in initiating the innate immune response in mammalian cells by orchestrating selective cell migration and immune cell activation. With its multilayered structure, the skin, which is the largest organ in the body, performs a crucial defense function, protecting the human body from harmful environmental threats and pathogens. CXCRs contribute to primary immunological defense; these receptors are differentially expressed by different types of skin cells and act as key players in initiating downstream innate immune responses. While the initiation of inflammatory responses by CXCRs is essential for pathogen elimination and tissue healing, overactivation of these receptors can enhance T-cell-mediated autoimmune responses, resulting in excessive inflammation and the development of several skin disorders, including psoriasis, atopic dermatitis, allergic contact dermatitis, vitiligo, autoimmune diseases, and skin cancers. In summary, CXCRs serve as critical links that connect innate immunity and adaptive immunity. In this article, we present the current knowledge about the functions of CXCRs in the homeostasis function of the skin and their contributions to the pathogenesis of allergic contact dermatitis and psoriasis. Furthermore, we will examine the research progress and efficacy of therapeutic approaches that target CXCRs.
Collapse
Affiliation(s)
- Wenjie Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
7
|
Chai K, Wang C, Zhou J, Mu W, Gao M, Fan Z, Lv G. Quenching thirst with poison? Paradoxical effect of anticancer drugs. Pharmacol Res 2023; 198:106987. [PMID: 37949332 DOI: 10.1016/j.phrs.2023.106987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Anticancer drugs have been developed with expectations to provide long-term or at least short-term survival benefits for patients with cancer. Unfortunately, drug therapy tends to provoke malignant biological and clinical behaviours of cancer cells relating not only to the evolution of resistance to specific drugs but also to the enhancement of their proliferation and metastasis abilities. Thus, drug therapy is suspected to impair long-term survival in treated patients under certain circumstances. The paradoxical therapeutic effects could be described as 'quenching thirst with poison', where temporary relief is sought regardless of the consequences. Understanding the underlying mechanisms by which tumours react on drug-induced stress to maintain viability is crucial to develop rational targeting approaches which may optimize survival in patients with cancer. In this review, we describe the paradoxical adverse effects of anticancer drugs, in particular how cancer cells complete resistance evolution, enhance proliferation, escape from immune surveillance and metastasize efficiently when encountered with drug therapy. We also describe an integrative therapeutic framework that may diminish such paradoxical effects, consisting of four main strategies: (1) targeting endogenous stress response pathways, (2) targeting new identities of cancer cells, (3) adaptive therapy- exploiting subclonal competition of cancer cells, and (4) targeting tumour microenvironment.
Collapse
Affiliation(s)
- Kaiyuan Chai
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Chuanlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jianpeng Zhou
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wentao Mu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Menghan Gao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
8
|
Hekmatirad S, Moloudizargari M, Fallah M, Rahimi A, Poortahmasebi V, Asghari MH. Cancer-associated immune cells and their modulation by melatonin. Immunopharmacol Immunotoxicol 2023; 45:788-801. [PMID: 37489565 DOI: 10.1080/08923973.2023.2239489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
OBJECTIVES Rapidly growing evidence suggests that immune cells play a key role in determining tumor progression. Tumor cells are surrounded by a microenvironment composed of different cell populations including immune cells. The cross talk between tumor cells and the neighboring microenvironment is an important factor to take into account while designing tumor therapies. Despite significant advances in immunotherapy strategies, a relatively small proportion of patients have successfully responded to them. Therefore, the search for safe and efficient drugs, which could be used alongside conventional therapies to boost the immune system against tumors, is an ongoing need. In the present work, the modulatory effects of melatonin on different components of tumor immune microenvironment are reviewed. METHODS A thorough literature review was performed in PubMed, Scopus, and Web of Science databases. All published papers in English on tumor immune microenvironment and the relevant modulatory effects of melatonin were scrutinized. RESULTS Melatonin modulates macrophage polarization and prevents M2 induction. Moreover, it prevents the conversion of fibroblasts into cancer-associated fibroblasts (CAFs) and prevents cancer cell stemness. In addition, it can affect the payload composition of tumor-derived exosomes (TEXs) and their secretion levels to favor a more effective anti-tumor immune response. Melatonin is a safe molecule that affects almost all components of the tumor immune microenvironment and prevents them from being negatively affected by the tumor. CONCLUSION Based on the effects of melatonin on normal cells, tumor cells and microenvironment components, it could be an efficient compound to be used in combination with conventional immune-targeted therapies to increase their efficacy.
Collapse
Affiliation(s)
- Shirin Hekmatirad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Marjan Fallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Medicinal Plant Research Centre, Islamic Azad University, Amol, Iran
| | - Atena Rahimi
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
9
|
Shinozuka T, Kanda M, Shimizu D, Umeda S, Takami H, Inokawa Y, Hattori N, Hayashi M, Tanaka C, Nakayama G, Kodera Y. Identification of stromal cell-derived factor 4 as a liquid biopsy-based diagnostic marker in solid cancers. Sci Rep 2023; 13:15540. [PMID: 37730904 PMCID: PMC10511445 DOI: 10.1038/s41598-023-42201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
There is a need for serum diagnostic biomarkers to improve the prognosis of solid malignant tumors. Here, we conducted a single-institutional study to evaluate the diagnostic performance of serum stromal cell-derived factor 4 (SDF4) levels in cancer patients. Serum samples were collected from a total of 582 patients with solid cancers including gastric cancer (GC) and 80 healthy volunteers. SDF4 protein levels in sera, and conditioned media or lysates of human GC cell lines were measured by enzyme-linked immunosorbent assay, and those in GC tissue by immunohistochemistry. Serum SDF4 levels were higher in patients with cancer than the healthy control in all cancer type. Regarding GC, serum SDF4 levels distinguished healthy controls from GC patients with the area under the curve value of 0.973, sensitivity of 89%, and specificity of 99%. Serum SDF4 levels were significantly elevated in patient with early stage GC. In immunohistochemistry, the frequency of SDF4-positive GC tumors did not vary significantly between GC stages. The ability of human GC cell lines to both produce and secrete SDF4 was confirmed in vitro. In conclusion, serum SDF4 levels could be a promising candidate for a novel diagnostic biomarker for GC and other malignancies.
Collapse
Affiliation(s)
- Takahiro Shinozuka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan.
| | - Dai Shimizu
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Shinichi Umeda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Yoshikuni Inokawa
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Norifumi Hattori
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| |
Collapse
|
10
|
Wang BYH, Hsiao AWT, Shiu HT, Wong N, Wang AYF, Lee CW, Lee OKS, Lee WYW. Mesenchymal stem cells alleviate dexamethasone-induced muscle atrophy in mice and the involvement of ERK1/2 signalling pathway. Stem Cell Res Ther 2023; 14:195. [PMID: 37542297 PMCID: PMC10403871 DOI: 10.1186/s13287-023-03418-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/17/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND High dosage of dexamethasone (Dex) is an effective treatment for multiple diseases; however, it is often associated with severe side effects including muscle atrophy, resulting in higher risk of falls and poorer life quality of patients. Cell therapy with mesenchymal stem cells (MSCs) holds promise for regenerative medicine. In this study, we aimed to investigate the therapeutic efficacy of systemic administration of adipose-derived mesenchymal stem cells (ADSCs) in mitigating the loss of muscle mass and strength in mouse model of DEX-induced muscle atrophy. METHODS 3-month-old female C57BL/6 mice were treated with Dex (20 mg/kg body weight, i.p.) for 10 days to induce muscle atrophy, then subjected to intravenous injection of a single dose of ADSCs ([Formula: see text] cells/kg body weight) or vehicle control. The mice were killed 7 days after ADSCs treatment. Body compositions were measured by animal DXA, gastrocnemius muscle was isolated for ex vivo muscle functional test, histological assessment and Western blot, while tibialis anterior muscles were isolated for RNA-sequencing and qPCR. For in vitro study, C2C12 myoblast cells were cultured under myogenic differentiation medium for 5 days following 100 [Formula: see text]M Dex treatment with or without ADSC-conditioned medium for another 4 days. Samples were collected for qPCR analysis and Western blot analysis. Myotube morphology was measured by myosin heavy chain immunofluorescence staining. RESULTS ADSC treatment significantly increased body lean mass (10-20%), muscle wet weight (15-30%) and cross-sectional area (CSA) (~ 33%) in DEX-induced muscle atrophy mice model and down-regulated muscle atrophy-associated genes expression (45-65%). Hindlimb grip strength (~ 37%) and forelimb ex vivo muscle contraction property were significantly improved (~ 57%) in the treatment group. Significant increase in type I fibres (~ 77%) was found after ADSC injection. RNA-sequencing results suggested that ERK1/2 signalling pathway might be playing important role underlying the beneficial effect of ADSC treatment, which was confirmed by ERK1/2 inhibitor both in vitro and in vivo. CONCLUSIONS ADSCs restore the pathogenesis of Dex-induced muscle atrophy with an increased number of type I fibres, stronger muscle strength, faster recovery rate and more anti-fatigue ability via ERK1/2 signalling pathway. The inhibition of muscle atrophy-associated genes by ADSCs offered this treatment as an intervention option for muscle-associated diseases. Taken together, our findings suggested that adipose-derived mesenchymal stem cell therapy could be a new treatment option for patient with Dex-induced muscle atrophy.
Collapse
Affiliation(s)
- Belle Yu-Hsuan Wang
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Allen Wei-Ting Hsiao
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hoi Ting Shiu
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nicodemus Wong
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Amanda Yu-Fan Wang
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chien-Wei Lee
- Center for Translational Genomics and Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan.
- Department of Biomedical Engineering, China Medical University, Taichung, 404327, Taiwan.
| | - Oscar Kuang-Sheng Lee
- Center for Translational Genomics and Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan.
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Orthopedics, China Medical University Hospital, Taichung, 404327, Taiwan.
| | - Wayne Yuk-Wai Lee
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong.
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong.
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
11
|
An L, Zhong Y, Tan J, Liu Y, Li A, Yang T, Wang S, Liu Y, Gao H. Sevoflurane exerts protection against myocardial ischemia-reperfusion injury and pyroptosis through the circular RNA PAN3/microRNA-29b-3p/stromal cell-derived factor 4 axis. Int Immunopharmacol 2023; 120:110219. [PMID: 37270931 DOI: 10.1016/j.intimp.2023.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 06/06/2023]
Abstract
OBJECTIVE Sevoflurane is suggested to exert protective functions against myocardial ischemia-reperfusion injury (MIRI). However, the particular mechanism remains elusive. Therefore, this research explored the mechanism of sevoflurane in MIRI-induced damage and pyroptosis. METHODS Subsequent to gain-or loss-of-function assays or/and sevoflurane treatment, the MIRI model was developed in rats. Cardiac function and body and heart weight of rats were evaluated, followed by measurement of apoptosis and creatine kinase MB (CK-MB), lactate dehydrogenase (LDH), and pyroptosis-related protein levels. After loss-of-function assays or/and sevoflurane treatment in human cardiomyocytes (HCMs), the hypoxia/reoxygenation (H/R) model was constructed. In HCMs, cell viability, apoptosis, and pyroptosis-related proteins were detected. Circular RNA PAN3 (circPAN3), microRNA (miR)-29b-3p, and stromal cell-derived factor 4 (SDF4) expression was determined in rat myocardial tissues and HCMs. Mechanistically, interactions among circPAN3, miR-29b-3p, and SDF4 were analyzed. RESULTS MIRI modeling increased miR-29b-3p expression and diminished circPAN3 and SDF4 expression in H/R-treated HCMs and MIRI rats, which was nullified by sevoflurane preconditioning. Mechanistically, circPAN3 negatively targeted miR-29b-3p to upregulate SDF4. Moreover, sevoflurane preconditioning reduced heart weight/body weight ratio, LDH, CK-MB, myocardial infarct size, left ventricular end-diastolic pressure, apoptosis, and pyroptosis, while elevating the increase and decrease of left ventricular pressure (±dp/dt max) and left ventricular systolic pressure in MIRI rats. In addition, sevoflurane preconditioning augmented viability while diminishing apoptosis and pyroptosis in H/R-treated HCMs. Moreover, circPAN3 silencing or miR-29b-3p overexpression abrogated alleviatory effects of sevoflurane on myocardial injury and pyroptosis in vitro. CONCLUSION Sevoflurane treatment ameliorated myocardial injury and pyroptosis in MIRI via circPAN3/miR-29b-3p/SDF4 axis.
Collapse
Affiliation(s)
- Li An
- School of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou 550025, PR China; Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Translational Medicine Research Center of Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Yi Zhong
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Jian Tan
- Department of Anesthesiology, The Third Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 558004, PR China
| | - Yang Liu
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Anliang Li
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Tianyu Yang
- School of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Shengzhao Wang
- School of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Yanqiu Liu
- Department of Anesthesiology, Guiyang Fourth People's Hospital, Guiyang, Guizhou 550007, PR China.
| | - Hong Gao
- Department of Anesthesiology, Guizhou Hospital of The 1st Affiliated Hospital, Sun Yat-sen University, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
12
|
Hartl L, Duitman J, Maarten FB, Spek CA. The Dual Role of C/EBPδ in Cancer. Crit Rev Oncol Hematol 2023; 185:103983. [PMID: 37024021 DOI: 10.1016/j.critrevonc.2023.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
CCAAT/Enhancer-Binding Protein delta (C/EBPδ) is a transcription factor involved in differentiation and inflammation. While sparsely expressed in adult tissues, aberrant expression of C/EBPδ has been associated with different cancers. Initially, re-expression of C/EBPδ in cell cultures limited tumor cell proliferation, assigning it a tumor suppressor role. However, opposing observations were made in pre-clinical models and patients, suggesting that C/EBPδ not only mediates cell proliferation but dictates a broader spectrum of tumorigenesis-related effects. It is now widely accepted that C/EBPδ contributes to an inflammatory, tumor-promoting microenvironment, aids hypoxia adaption and contributes to the recruitment of blood vessels for improved nutrient supply to tumor cells and facilitated extravasation. This review summarizes the work published on this transcription factor in the field of cancer over the past decade. It points out areas in which a consensus on C/EBPδ's role appears to emerge and seek to explain seemingly contradictory results.
Collapse
Affiliation(s)
- Leonie Hartl
- Amsterdam UMC Location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, the Netherlands.
| | - JanWillem Duitman
- Amsterdam UMC Location University of Amsterdam, Department of Pulmonary Medicine, 1105 AZ Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, 1105 AZ Amsterdam, the Netherlands; Amsterdam Infection & Immunity, Inflammatory Diseases, 1105 AZ Amsterdam, the Netherlands
| | - F Bijlsma Maarten
- Amsterdam UMC Location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, the Netherlands
| | - C Arnold Spek
- Amsterdam UMC Location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
13
|
He S, Liang Y, Zhang Y, Liu X, Gong S, Ye M, Huang S, Tan X, Zhou S, Zhao Y, Liu N, Li Y. LINC00173 facilitates tumor progression by stimulating RAB1B-mediated PA2G4 and SDF4 secretion in nasopharyngeal carcinoma. Mol Oncol 2023; 17:518-533. [PMID: 36606322 PMCID: PMC9980309 DOI: 10.1002/1878-0261.13375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
An increasing number of studies have found that long non-coding RNA (lncRNA) play important roles in driving the progression of nasopharyngeal carcinoma (NPC). Our microarray screening revealed that expression of the lncRNA long intergenic non-protein coding RNA 173 (LINC00173) was upregulated in NPC. However, its role and mechanism in NPC have not yet been elucidated. In this study, we demonstrate that high LINC00173 expression indicated a poor prognosis in NPC patients. Knockdown of LINC00173 significantly inhibited NPC cell proliferation, migration and invasion in vitro. Mechanistically, LINC00173 interacted and colocalized with Ras-related protein Rab-1B (RAB1B) in the cytoplasm, but the modulation of LINC00173 expression did not affect the expression of RAB1B at either the mRNA or protein levels. Instead, relying on the stimulation of RAB1B, LINC00173 could facilitate the extracellular secretion of proliferation-associated 2G4 (PA2G4) and stromal cell-derived factor 4 (SDF4; also known as 45-kDa calcium-binding protein) proteins, and knockdown of these proteins could reverse the NPC aggressive phenotype induced by LINC00173 overexpression. Moreover, in vivo LINC00173-knockdown models exhibited a marked slowdown in tumor growth and a significant reduction in lymph node and lung metastases. In summary, LINC00173 serves as a crucial driver for NPC progression, and the LINC00173-RAB1B-PA2G4/SDF4 axis might provide a potential therapeutic target for NPC patients.
Collapse
Affiliation(s)
- Shi‐Wei He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ye‐Lin Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yuan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Sha Gong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ming‐Liang Ye
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Sheng‐Yan Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xi‐Rong Tan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shi‐Qing Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yin Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Na Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ying‐Qing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
14
|
Zhang Y, Wang C, Xia Q, Jiang W, Zhang H, Amiri-Ardekani E, Hua H, Cheng Y. Machine learning-based prediction of candidate gene biomarkers correlated with immune infiltration in patients with idiopathic pulmonary fibrosis. Front Med (Lausanne) 2023; 10:1001813. [PMID: 36860337 PMCID: PMC9968813 DOI: 10.3389/fmed.2023.1001813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
Objective This study aimed to identify candidate gene biomarkers associated with immune infiltration in idiopathic pulmonary fibrosis (IPF) based on machine learning algorithms. Methods Microarray datasets of IPF were extracted from the Gene Expression Omnibus (GEO) database to screen for differentially expressed genes (DEGs). The DEGs were subjected to enrichment analysis, and two machine learning algorithms were used to identify candidate genes associated with IPF. These genes were verified in a validation cohort from the GEO database. Receiver operating characteristic (ROC) curves were plotted to assess the predictive value of the IPF-associated genes. The cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm was used to evaluate the proportion of immune cells in IPF and normal tissues. Additionally, the correlation between the expression of IPF-associated genes and the infiltration levels of immune cells was examined. Results A total of 302 upregulated and 192 downregulated genes were identified. Functional annotation, pathway enrichment, Disease Ontology and gene set enrichment analyses revealed that the DEGs were related to the extracellular matrix and immune responses. COL3A1, CDH3, CEBPD, and GPIHBP1 were identified as candidate biomarkers using machine learning algorithms, and their predictive value was verified in a validation cohort. Additionally, ROC analysis revealed that the four genes had high predictive accuracy. The infiltration levels of plasma cells, M0 macrophages and resting dendritic cells were higher and those of resting natural killer (NK) cells, M1 macrophages and eosinophils were lower in the lung tissues of patients with IPF than in those of healthy individuals. The expression of the abovementioned genes was correlated with the infiltration levels of plasma cells, M0 macrophages and eosinophils. Conclusion COL3A1, CDH3, CEBPD, and GPIHBP1 are candidate biomarkers of IPF. Plasma cells, M0 macrophages and eosinophils may be involved in the development of IPF and may serve as immunotherapeutic targets in IPF.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, China
| | - Cong Wang
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, China
| | - Qingqing Xia
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, China
| | - Weilong Jiang
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, China
| | - Huizhe Zhang
- Department of Respiratory Medicine, Yancheng Hospital of Traditional Chinese Medicine, Yancheng Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
| | - Ehsan Amiri-Ardekani
- Department of Phytopharmaceuticals (Traditional Pharmacy), Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran,*Correspondence: Ehsan Amiri-Ardekani,
| | - Haibing Hua
- Department of Gastroenterology, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, China,Haibing Hua,
| | - Yi Cheng
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Yi Cheng,
| |
Collapse
|
15
|
Chan TC, Shiue YL, Li CF. The biological impacts of CEBPD on urothelial carcinoma development and progression. Front Oncol 2023; 13:1123776. [PMID: 36776299 PMCID: PMC9914172 DOI: 10.3389/fonc.2023.1123776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
Urothelial carcinoma (UC), which includes urinary bladder urothelial carcinoma (UBUC) and upper tract urothelial carcinoma (UTUC), is one of the most common malignancies worldwide. Accordingly, a comprehensive understanding of the underlying mechanism governing UC development is compulsory. Aberrant CCAAT/enhancer-binding protein delta (CEBPD), a transcription factor, displays an oncogene or tumor suppressor depending on tumor type and microenvironments. However, CEBPD has been reported to possess a clear oncogenic function in UC through multiple regulation pathways. Genomic amplification of CEBPD triggered by MYC-driven genome instability is frequently examined in UC that drives CEBPD overexpression. Upregulated CEBPD transcriptionally suppresses FBXW7 to stabilize MYC protein and further induces hexokinase II (HK2)-related aerobic glycolysis that fuels cell growth. Apart from the MYC-dependent pathway, CEBPD also downregulates the level of hsa-miR-429 to enhance HK2-associated glycolysis and induce angiogenesis driven by vascular endothelial growth factor A (VEGFA). Additionally, aggressive UC is attributed to the tumor metastasis regulated by CEBPD-induced matrix metalloproteinase-2 (MMP2) overexpression. Furthermore, elevated CEBPD induced by cisplatin (CDDP) is identified to have dual functions, namely, CDDP-induced chemotherapy resistance or drive CDDP-induced antitumorigenesis. Given that the role of CEBPD in UC is getting clear but pending a more systemic reappraisal, this review aimed to comprehensively discuss the underlying mechanism of CEBPD in UC tumorigenesis.
Collapse
Affiliation(s)
- Ti-Chun Chan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan,National Health Research Institutes, National Institute of Cancer Research, Tainan, Taiwan
| | - Yow-Ling Shiue
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan,*Correspondence: Yow-Ling Shiue, ; Chien-Feng Li,
| | - Chien-Feng Li
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan,National Health Research Institutes, National Institute of Cancer Research, Tainan, Taiwan,Department of Clinical Medicine, Chi Mei Medical Center, Tainan, Taiwan,*Correspondence: Yow-Ling Shiue, ; Chien-Feng Li,
| |
Collapse
|
16
|
Peng W, Zhu T, Xiang G, Ding T, Zhao J, Xiong D, Zhong Y, Zhang Y. Identification of signalling downstream of the transcription factor forkhead box protein M1 that protects against endoplasmic reticulum stress in a diabetic foot ulcer model. Diabet Med 2023; 40:e15051. [PMID: 36692102 DOI: 10.1111/dme.15051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
AIMS Diabetic foot ulcer (DFU) has a significant impact on the quality of life of diabetic mellitus (DM) patients. Here, we aimed to explore the molecules with aberrant expression and their regulatory mechanisms in DFU. METHODS The expression of gene and protein was examined using quantitative polymerase chain reaction (qPCR) and western blot. Pearson's correlation analysis was used to analyse interactions among FOXM1, GAS5 and SDF4. Immunofluorescence was used to detect PDI and GRP78 expression. Flow cytometry was used to assess cell apoptosis. Tube formation assay was used to determine angiogenic capacity. Fluorescence in situ hybridization (FISH) assay was employed to determine the cellular localization of GAS5 and SDF4 in human umbilical vein endothelial cells (HUVECs). The interactions among FOXM1, GAS5 and SDF4 were validated by chromatin immunoprecipitation (ChIP), luciferase, RNA pull-down and RNA immunoprecipitation (RIP) assays. RESULTS FOXM1, GAS5 and SDF4 were decreased in the skin tissues of DFU patients. High glucose (HG) stimulation induced endoplasmic reticulum (ER) stress and cell apoptosis but suppressed angiogenesis in HUVECs, which were abolished by FOXM1 overexpression. FOXM1 promoted GAS5 transcriptional activity, resulting in increased GAS5 expression, and GAS5 knockdown reversed the effects of FOXM1 overexpression in HG-treated HUVECs. Moreover, GAS5 recruited TAF15 to promote SDF4 expression in HUVECs. GAS5 overexpression inhibited ER stress, cell apoptosis and induced angiogenesis in HG-treated HUVECs which could be reversed by silencing SDF4. CONCLUSION Our results revealed that FOXM1 suppressed ER stress, cell apoptosis and promoted angiogenesis in HG-induced HUVECs via mediating GAS5/TAF15/SDF4 axis, providing a novel therapeutic molecule mechanism for DFU.
Collapse
Affiliation(s)
- Weixia Peng
- Department of Endocrine, Yiyang Central Hospital, Yiyang, Hunan, P.R. China
| | - Ting Zhu
- Department of Endocrine, Yiyang Central Hospital, Yiyang, Hunan, P.R. China
| | - Guangda Xiang
- Department of Endocrine, Central Theater General Hospital of PLA, Wuhan, Hubei, P.R. China
| | - Ting Ding
- Department of Endocrine, Yiyang Central Hospital, Yiyang, Hunan, P.R. China
| | - Jun Zhao
- Department of Endocrine, Yiyang Central Hospital, Yiyang, Hunan, P.R. China
| | - Dan Xiong
- Department of Endocrine, Yiyang Central Hospital, Yiyang, Hunan, P.R. China
| | - Yaqin Zhong
- Department of Endocrine, Yiyang Central Hospital, Yiyang, Hunan, P.R. China
| | - Youqi Zhang
- Department of Emergency, Yiyang Central Hospital, Yiyang, Hunan, P.R. China
| |
Collapse
|
17
|
Wong KY, Cheung AH, Chen B, Chan WN, Yu J, Lo KW, Kang W, To KF. Cancer-associated fibroblasts in nonsmall cell lung cancer: From molecular mechanisms to clinical implications. Int J Cancer 2022; 151:1195-1215. [PMID: 35603909 PMCID: PMC9545594 DOI: 10.1002/ijc.34127] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022]
Abstract
Lung cancer is the common and leading cause of cancer death worldwide. The tumor microenvironment has been recognized to be instrumental in tumorigenesis. To have a deep understanding of the molecular mechanism of nonsmall cell lung carcinoma (NSCLC), cancer-associated fibroblasts (CAFs) have gained increasing research interests. CAFs belong to the crucial and dominant cell population in the tumor microenvironment to support the cancer cells. The interplay and partnership between cancer cells and CAFs contribute to each stage of tumorigenesis. CAFs exhibit prominent heterogeneity and secrete different kinds of cytokines and chemokines, growth factors and extracellular matrix proteins involved in cancer cell proliferation, invasion, metastasis and chemoresistance. Many studies focused on the protumorigenic functions of CAFs, yet many challenges about the heterogeneity of CAFS remain unresolved. This review comprehensively summarized the tumor-promoting role and molecular mechanisms of CAFs in NSCLC, including their origin, phenotypic changes and heterogeneity and their functional roles in carcinogenesis. Meanwhile, we also highlighted the updated molecular classifications based on the molecular features and functional roles of CAFs. With the development of cutting-edge platforms and further investigations of CAFs, novel therapeutic strategies for accurately targeting CAFs in NSCLC may be developed based on the increased understanding of the relevant molecular mechanisms.
Collapse
Affiliation(s)
- Kit Yee Wong
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Alvin Ho‐Kwan Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong KongSARChina
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| |
Collapse
|
18
|
Groves SM, Ildefonso GV, McAtee CO, Ozawa PMM, Ireland AS, Stauffer PE, Wasdin PT, Huang X, Qiao Y, Lim JS, Bader J, Liu Q, Simmons AJ, Lau KS, Iams WT, Hardin DP, Saff EB, Holmes WR, Tyson DR, Lovly CM, Rathmell JC, Marth G, Sage J, Oliver TG, Weaver AM, Quaranta V. Archetype tasks link intratumoral heterogeneity to plasticity and cancer hallmarks in small cell lung cancer. Cell Syst 2022; 13:690-710.e17. [PMID: 35981544 PMCID: PMC9615940 DOI: 10.1016/j.cels.2022.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 05/10/2022] [Accepted: 07/25/2022] [Indexed: 01/26/2023]
Abstract
Small cell lung cancer (SCLC) tumors comprise heterogeneous mixtures of cell states, categorized into neuroendocrine (NE) and non-neuroendocrine (non-NE) transcriptional subtypes. NE to non-NE state transitions, fueled by plasticity, likely underlie adaptability to treatment and dismal survival rates. Here, we apply an archetypal analysis to model plasticity by recasting SCLC phenotypic heterogeneity through multi-task evolutionary theory. Cell line and tumor transcriptomics data fit well in a five-dimensional convex polytope whose vertices optimize tasks reminiscent of pulmonary NE cells, the SCLC normal counterparts. These tasks, supported by knowledge and experimental data, include proliferation, slithering, metabolism, secretion, and injury repair, reflecting cancer hallmarks. SCLC subtypes, either at the population or single-cell level, can be positioned in archetypal space by bulk or single-cell transcriptomics, respectively, and characterized as task specialists or multi-task generalists by the distance from archetype vertex signatures. In the archetype space, modeling single-cell plasticity as a Markovian process along an underlying state manifold indicates that task trade-offs, in response to microenvironmental perturbations or treatment, may drive cell plasticity. Stifling phenotypic transitions and plasticity may provide new targets for much-needed translational advances in SCLC. A record of this paper's Transparent Peer Review process is included in the supplemental information.
Collapse
Affiliation(s)
- Sarah M Groves
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Geena V Ildefonso
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Caitlin O McAtee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Patricia M M Ozawa
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Abbie S Ireland
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Philip E Stauffer
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Perry T Wasdin
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Xiaomeng Huang
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Yi Qiao
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jing Shan Lim
- Department of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jackie Bader
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Alan J Simmons
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Wade T Iams
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Doug P Hardin
- Department of Mathematics and Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235, USA
| | - Edward B Saff
- Department of Mathematics, Vanderbilt University, Nashville, TN 37235, USA
| | - William R Holmes
- Department of Mathematics, Vanderbilt University, Nashville, TN 37235, USA; Department of Physics, Vanderbilt University, Nashville, TN 37235, USA
| | - Darren R Tyson
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Christine M Lovly
- Department of Mathematics and Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gabor Marth
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Julien Sage
- Department of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37235, USA
| | - Vito Quaranta
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
19
|
Keulers TG, Libregts SF, Beaumont JE, Savelkouls KG, Bussink J, Duimel H, Dubois L, Zonneveld MI, López‐Iglesias C, Bezstarosti K, Demmers JA, Vooijs M, Wauben M, Rouschop KM. Secretion of pro-angiogenic extracellular vesicles during hypoxia is dependent on the autophagy-related protein GABARAPL1. J Extracell Vesicles 2021; 10:e12166. [PMID: 34859607 PMCID: PMC8640512 DOI: 10.1002/jev2.12166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 12/29/2022] Open
Abstract
Tumour hypoxia is a hallmark of solid tumours and contributes to tumour progression, metastasis development and therapy resistance. In response to hypoxia, tumour cells secrete pro-angiogenic factors to induce blood vessel formation and restore oxygen supply to hypoxic regions. Extracellular vesicles (EVs) are emerging as mediators of intercellular communication in the tumour microenvironment. Here we demonstrate that increased expression of the LC3/GABARAP protein family member GABARAPL1, is required for endosomal maturation, sorting of cargo to endosomes and the secretion of EVs. Silencing GABARAPL1 results in a block in the early endosomal pathway and impaired secretion of EVs with pro-angiogenic properties. Tumour xenografts of doxycycline inducible GABARAPL1 knockdown cells display impaired vascularisation that results in decreased tumour growth, elevated tumour necrosis and increased therapy efficacy. Moreover, our data show that GABARAPL1 is expressed on the EV surface and targeting GABARAPL1+ EVs with GABARAPL1 targeting antibodies results in blockade of pro-angiogenic effects in vitro. In summary, we reveal that GABARAPL1 is required for EV cargo loading and secretion. GABARAPL1+ EVs are detectable and targetable and are therefore interesting to pursue as a therapeutic target.
Collapse
Affiliation(s)
- Tom G. Keulers
- Department of Radiation Oncology Radiation Oncology (Maastro) / GROW – School for Oncology and Developmental BiologyMaastricht University Medical Centre +MaastrichtNetherlands
| | - Sten F. Libregts
- Department of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtNetherlands
| | - Joel E.J. Beaumont
- Department of Radiation Oncology Radiation Oncology (Maastro) / GROW – School for Oncology and Developmental BiologyMaastricht University Medical Centre +MaastrichtNetherlands
| | - Kim G. Savelkouls
- Department of Radiation Oncology Radiation Oncology (Maastro) / GROW – School for Oncology and Developmental BiologyMaastricht University Medical Centre +MaastrichtNetherlands
| | - Johan Bussink
- Department of Radiation OncologyRadboud University Medical CenterNijmegenNetherlands
| | - Hans Duimel
- Microscopy CORE LabMaastricht Multimodal Molecular Imaging InstituteFHML Division of NanoscopyUniversity of MaastrichtMaastrichtNetherlands
| | - Ludwig Dubois
- The M‐LabDepartment of Precision MedicineGROW ‐ School of OncologyMaastricht UniversityMaastrichtNetherlands
| | - Marijke I. Zonneveld
- Department of Radiation Oncology Radiation Oncology (Maastro) / GROW – School for Oncology and Developmental BiologyMaastricht University Medical Centre +MaastrichtNetherlands
| | - Carmen López‐Iglesias
- Microscopy CORE LabMaastricht Multimodal Molecular Imaging InstituteFHML Division of NanoscopyUniversity of MaastrichtMaastrichtNetherlands
| | - Karel Bezstarosti
- Proteomics CenterErasmus University Medical CenterRotterdamNetherlands
| | - Jeroen A. Demmers
- Proteomics CenterErasmus University Medical CenterRotterdamNetherlands
| | - Marc Vooijs
- Department of Radiation Oncology Radiation Oncology (Maastro) / GROW – School for Oncology and Developmental BiologyMaastricht University Medical Centre +MaastrichtNetherlands
| | - Marca Wauben
- Department of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtNetherlands
| | - Kasper M.A. Rouschop
- Department of Radiation Oncology Radiation Oncology (Maastro) / GROW – School for Oncology and Developmental BiologyMaastricht University Medical Centre +MaastrichtNetherlands
| |
Collapse
|