1
|
Zhou Y, Fang X, Huang LJ, Wu PW. Transcriptome and single-cell profiling of the mechanism of diabetic kidney disease. World J Diabetes 2025; 16:101538. [DOI: 10.4239/wjd.v16.i2.101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/29/2024] [Accepted: 11/26/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND The NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome may play an important role in diabetic kidney disease (DKD). However, the exact link remains unclear.
AIM To investigate the role of the NLRP3 inflammasome in DKD.
METHODS Using datasets from the Gene Expression Omnibus database, 30 NLRP3 inflammasome-related genes were identified. Differentially expressed genes were selected using differential expression analysis, whereas intersecting genes were selected based on overlapping differentially expressed genes and NLRP3 inflammasome-related genes. Subsequently, three machine learning algorithms were used to screen genes, and biomarkers were identified by overlapping the genes from the three algorithms. Potential biomarkers were validated by western blotting in a db/db mouse model of diabetes.
RESULTS Two biomarkers, sirtuin 2 (SIRT2) and caspase 1 (CASP1), involved in the Leishmania infection pathway were identified. Both biomarkers were expressed in endothelial cells. Pseudo-temporal analysis based on endothelial cells showed that DKD mostly occurs during the mid-differentiation stage. Western blotting results showed that CASP1 expression was higher in the DKD group than in the control group (P < 0.05), and SIRT2 content decreased (P < 0.05).
CONCLUSION SIRT2 and CASP1 provide a potential theoretical basis for DKD treatment.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Xiao Fang
- Department of Kidney Transplantation, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Lin-Jing Huang
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
- Department of Endocrinology National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou 350212, Fujian Province, China
- Clinical Research Center for Metabolic Diseases of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
- Diabetes Research Institute of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Pei-Wen Wu
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
- Department of Endocrinology National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou 350212, Fujian Province, China
- Clinical Research Center for Metabolic Diseases of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
- Diabetes Research Institute of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| |
Collapse
|
2
|
Shu G, Wang C, Song A, Zheng Z, Zheng S, Song Y, Wang X, Yu H, Yin S, Deng X. Water extract of earthworms mitigates kidney injury triggered by oxidative stress via activating intrarenal Sirt1/Nrf2 cascade and ameliorating mitochondrial damage. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118648. [PMID: 39089659 DOI: 10.1016/j.jep.2024.118648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemia-reperfusion (IR) injury can result in acute renal failure. Oxidative stress is a major factor in IR-induced cell death in the kidneys. According to traditional Chinese medicine, earthworms (Pheretima aspergillum) can be used to treat various kidney diseases. AIM OF THE STUDY The present study was designed to understand the protective effects of the water extract of earthworms (WEE) against oxidative stress on the kidneys and the crucial molecular events associated with its nephroprotective activity. MATERIALS AND METHODS Cytotoxicity caused by H2O2 in HEK293, HK2, and primary mouse renal tubular epithelial cells (TECs) was used to investigate the effect of WEE on oxidative stress-induced renal injury in vitro. IR-induced kidney injury was established using rats as an in vivo model. The WEE-mediated protection of the kidneys against oxidative stress was compared with that of glutathione, a common antioxidant used as a positive control. RESULTS In HEK293 cells, HK2 cells, and primary mouse TECs, WEE relieved H2O2-induced mitochondrial damage, apoptosis, and ferroptosis. In kidney cells, WEE increased the expression of Sirt1, boosted LKB1 and AMPK phosphorylation, and upregulated nuclear Nrf2. Suppression of Sirt1 and LKB1 knock down abrogated WEE-induced protection against H2O2. WEE ameliorated IR-induced kidney injury and intrarenal inflammation in rats. In rat kidneys, WEE mitigated mitochondrial damage and suppressed IR-induced apoptosis and ferroptosis. Mechanistically, WEE increased Sirt1 expression, enhanced the phosphorylation of LKB1 and AMPK, and increased intranuclear Nrf2 levels in IR kidneys. IR treatment resulted in considerable increase in renal MDA levels and a prominent decrease in antioxidative enzyme activity. These lesions were significantly alleviated by WEE. CONCLUSIONS WEE mitigated H2O2-induced cytotoxicity in kidney cells in vitro and improved IR-induced kidney damage in rats. Mechanistically, WEE potentiated the Sirt1/Nrf2 axis and relieved mitochondrial damage in the kidney cells. These events inhibited the apoptosis and ferroptosis induced by oxidative stress. Our findings support the potential application of WEE for the clinical treatment of kidney diseases caused by intrarenal oxidative stress.
Collapse
Affiliation(s)
- Guangwen Shu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Chuo Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Anning Song
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhiyong Zheng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Shanshan Zheng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Yanglu Song
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Xiaoming Wang
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Huifan Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
| | - Shijin Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
3
|
Ji Y, Xiao Y, Li S, Fan Y, Cai Y, Yang B, Chen H, Hu S. Protective effect and mechanism of Xiaoyu Xiezhuo decoction on ischemia-reperfusion induced acute kidney injury based on gut-kidney crosstalk. Ren Fail 2024; 46:2365982. [PMID: 39010816 DOI: 10.1080/0886022x.2024.2365982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
This study aimed to explore the mechanism of Xiaoyu Xiezhuo decoction (XXD) on ischemia-reperfusion-induced acute kidney injury (IRI-AKI) using network pharmacology methods and gut microbiota analysis. A total of 1778 AKI-related targets were obtained, including 140 targets possibly regulated by AKI in XXD, indicating that the core targets were mainly enriched in inflammatory-related pathways, such as the IL-17 signaling pathway and TNF signaling pathway. The unilateral IRI-AKI animal model was established and randomly divided into four groups: the sham group, the AKI group, the sham + XXD group, and the AKI + XXD group. Compared with the rats in the AKI group, XXD improved not only renal function, urinary enzymes, and biomarkers of renal damage such as Kim-1, cystatin C, and serum inflammatory factors such as IL-17, TNF-α, IL-6, and IL 1-β, but also intestinal metabolites including lipopolysaccharides, d-lactic acid, indoxyl sulfate, p-cresyl sulfate, and short-chain fatty acids. XXD ameliorated renal and colonic pathological injury as well as inflammation and chemokine gene abundance, such as IL-17, TNF-α, IL-6, IL-1β, ICAM-1, and MCP-1, in AKI rats via the TLR4/NF-κB/NLRP3 pathway, reducing the AKI score, renal pathological damage, and improving the intestinal mucosa's inflammatory infiltration. It also repaired markers of the mucosal barrier, including claudin-1, occludin, and ZO-1. Compared with the rats in the AKI group, the α diversity was significantly increased, and the Chao1 index was significantly enhanced after XXD treatment in both the sham group and the AKI group. The treatment group significantly reversed this change in microbiota.
Collapse
Affiliation(s)
- Yue Ji
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, PR China
- Institute of Nephrology & Beijing Key Laboratory, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, PR China
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Yunming Xiao
- Department of Nephrology, Medical School of Chinese PLA, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, PR China
| | - Shipian Li
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, PR China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yihua Fan
- Department of Rheumatism and Immunity, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Yuzi Cai
- Institute of Nephrology & Beijing Key Laboratory, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, PR China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Hongbo Chen
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, PR China
| | - Shouci Hu
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, PR China
| |
Collapse
|
4
|
Zhu LR, Cui W, Liu HP. Molecular mechanisms of endoplasmic reticulum stress-mediated acute kidney injury in juvenile rats and the protective role of mesencephalic astrocyte-derived neurotrophic factor. J Pharm Pharmacol 2024:rgae134. [PMID: 39437337 DOI: 10.1093/jpp/rgae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES This study examined the role of endoplasmic reticulum stress in pediatric acute kidney injury and the therapeutic effect of midbrain astrocyte-derived neurotrophic factor. METHODS Two-week-old Sprague-Dawley rats were divided into: Sham, ischemia-reperfusion injury-induced acute kidney injury (AKI), mesencephalic astrocyte-derived neurotrophic factor (MANF)-treated, tauroursodeoxycholic acid (TUDCA)-treated. Analyses were conducted 24 h post-treatment. Serum creatinine, cystatin C, Albumin, MANF levels were measured, cytokine concentrations in serum and renal tissues were determined using a Luminex assay. Histopathology was assessed via light and electron microscopy. Western blotting and RT-qPCR analyzed markers for oxidative stress, apoptosis, endoplasmic reticulum (ER) stress, and autophagy. HK-2 cells underwent hypoxia/reoxygenation (H/R) to simulate AKI and were treated with MANF or TUDCA. RESULTS AKI rats had increased serum creatinine, cystatin C, and inflammatory cytokines, along with significant renal damage, and showed loose and swollen ER structures, reduced cell proliferation, and elevated levels of IRE1, PERK, ATF6, CHOP, LC3-II/I, KIM-1, TLR4, JNK, and NF-κB. MANF treatment reduced these biomarkers and protein levels, improved ER structure and cell proliferation, alleviated oxidative stress, apoptosis, ER stress, and inhibited JNK/TLR4/NF-κB signaling. In HK-2 cells, MANF reduced ER stress and inflammation post-H/R exposure. CONCLUSIONS MANF treatment alleviates ER stress, oxidative stress, apoptosis, and inflammation in pediatric AKI, improving renal function and morphology.
Collapse
Affiliation(s)
- Li-Ran Zhu
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital (Children's Hospital of Fudan University Anhui Hospital, Children's Medical Center of Anhui Medical University), Wangjiang Road, Hefei, 230051 Anhui, China
| | - Wei Cui
- Department of Scientific Research and Education, Anhui Provincial Children's Hospital (Children's Hospital of Fudan University Anhui Hospital, Children's Medical Center of Anhui Medical University), Wangjiang Road, Hefei, 230051 Anhui, China
| | - Hai-Peng Liu
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital (Children's Hospital of Fudan University Anhui Hospital, Children's Medical Center of Anhui Medical University), Wangjiang Road, Hefei, 230051 Anhui, China
| |
Collapse
|
5
|
Ji Y, Hua H, Jia Z, Zhang A, Ding G. Therapy Targeted to the NLRP3 Inflammasome in Chronic Kidney Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:369-383. [PMID: 39430292 PMCID: PMC11488838 DOI: 10.1159/000539496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/07/2024] [Indexed: 10/22/2024]
Abstract
Background The NLRP3 inflammasome is a cytoplasmic polymeric protein complex composed of the cytoplasmic sensor NLRP3, the apoptosis-related spot-like protein ASC, and the inflammatory protease caspase-1. NLRP3 activates and releases IL-1β through classical pathways, and IL-18 mediates inflammation and activates gasdermin-D protein to induce cellular pyroptosis. Numerous studies have also emphasized the non-classical pathway activated by the NLRP3 inflammasome in chronic kidney disease (CKD) and the inflammasome-independent function of NLRP3. Summary The NLRP3-targeting inflammasome and its associated pathways have thus been widely studied in models of CKD treatment, but no drug that targets NLRP3 has thus far been approved for the treatment of CKD. Key Messages We herein reviewed the current interventional methods for targeting the NLRP3 inflammasome in various CKD models, analyzed their underlying mechanisms of action, classified and compared them, and discussed the advantages and follow-up directions of various interventional methods. This review therefore provides novel ideas and a reference for the development of targeted NLRP3-inflammasome therapy in CKD.
Collapse
Affiliation(s)
- Yong Ji
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Hu Hua
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Guixia Ding
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Torres JA, Holznecht N, Asplund DA, Kroes BC, Amarlkhagva T, Haeffner MM, Sharpe EH, Koestner S, Strubl S, Schimmel MF, Kruger S, Agrawal S, Aceves BA, Thangaraju M, Weimbs T. β-hydroxybutyrate recapitulates the beneficial effects of ketogenic metabolic therapy in polycystic kidney disease. iScience 2024; 27:110773. [PMID: 39314240 PMCID: PMC11418134 DOI: 10.1016/j.isci.2024.110773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/30/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is a common monogenic disease characterized by the formation of fluid-filled renal cysts, loss of mitochondrial function, decreased fatty acid oxidation, increased glycolysis, and likely renal failure. We previously demonstrated that inducing a state of ketosis ameliorates or reverses PKD progression in multiple animal models. In this study, we compare time-restricted feeding and 48-h periodic fasting regimens in both juvenile and adult Cy/+ rats. Both fasting regimens potently prevent juvenile disease progression and partially reverse PKD in adults. To explore the mechanism of fasting, we administered β-hydroxybutyrate (BHB) to Cy/+ rats and orthologous mouse models of PKD (Pkd1 RC/RC , Pkd1-Ksp:Cre). BHB recapitulated the effects of fasting in these models independent of stereoisomer, suggesting the effects of BHB are largely due to its signaling functions. These findings implicate the use of ketogenic metabolic therapy and BHB supplementation as potential disease modifiers of PKD and point toward underlying mechanisms.
Collapse
Affiliation(s)
- Jacob A. Torres
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Nickolas Holznecht
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - David A. Asplund
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Bradley C. Kroes
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Tselmeg Amarlkhagva
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Matthias M. Haeffner
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Elizabeth H. Sharpe
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Stella Koestner
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Sebastian Strubl
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Margaret F. Schimmel
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Samantha Kruger
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Shagun Agrawal
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Brina A. Aceves
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, University of Augusta, Augusta, GA, USA
| | - Thomas Weimbs
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
7
|
Hassan NF, El-Ansary MR, Selim HMRM, Ousman MS, Khattab MS, El-Ansary MRM, Gad ES, Moursi SMM, Gohar A, Gowifel AMH. Alirocumab boosts antioxidant status and halts inflammation in rat model of sepsis-induced nephrotoxicity via modulation of Nrf2/HO-1, PCSK9/HMGB1/NF-ᴋB/NLRP3 and Fractalkine/CX3CR1 hubs. Biomed Pharmacother 2024; 177:116929. [PMID: 38889644 DOI: 10.1016/j.biopha.2024.116929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024] Open
Abstract
Acute kidney injury (AKI) is a devastating consequence of sepsis, accompanied by high mortality rates. It was suggested that inflammatory pathways are closely linked to the pathogenesis of lipopolysaccharide (LPS)-induced AKI. Inflammatory signaling, including PCSK9, HMGB1/RAGE/TLR4/MYD88/NF-κB, NLRP3/caspase-1 and Fractalkine/CX3CR1 are considered major forerunners in this link. Alirocumab, PCSK9 inhibitor, with remarkable anti-inflammatory features. Accordingly, this study aimed to elucidate the antibacterial effect of alirocumab against E. coli in vitro. Additionally, evaluation of the potential nephroprotective effects of alirocumab against LPS-induced AKI in rats, highlighting the potential underlying mechanisms involved in these beneficial actions. Thirty-six adult male Wistar rats were assorted into three groups (n=12). Group I; was a normal control group, whereas sepsis-mediated AKI was induced in groups II and III through single-dose intraperitoneal injection of LPS on day 16. In group III, animals were given alirocumab. The results revealed that LPS-induced AKI was mitigated by alirocumab, evidenced by amelioration in renal function tests (creatinine, cystatin C, KIM-1, and NGAL); oxidative stress biomarkers (Nrf2, HO-1, TAC, and MDA); apoptotic markers and renal histopathological findings. Besides, alirocumab pronouncedly hindered LPS-mediated inflammatory response, confirmed by diminishing HMGB1, TNF-α, IL-1β, and caspase-1 contents; the gene expression of PCSK9, RAGE, NF-ᴋB and Fractalkine/CX3CR1, along with mRNA expression of TLR4, MYD88, and NLRP3. Regarding the antibacterial actions, results showed that alirocumab displayed potential anti-bacterial activity against pathogenic gram-negative E. coli. In conclusion, alirocumab elicited nephroprotective activities against LPS-induced AKI via modulation of Nrf2/HO-1, PCSK9, HMGB1/RAGE/TLR4/MYD88/NF-ᴋB/NLRP3/Caspase-1, Fractalkine/CX3R1 and apoptotic axes.
Collapse
Affiliation(s)
- Noha F Hassan
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| | - Mona R El-Ansary
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia; Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt.
| | - Mona S Ousman
- Emergency Medical Services, College of Applied Sciences, AlMaarefa University, P.O. Box 71666, Riyadh, Saudi Arabia.
| | - Marwa S Khattab
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza 1211, Egypt.
| | - Mahmoud R M El-Ansary
- Medical Microbiology and Immunology Department, Faculty of Medicine, Misr University for Science and Technology (MUST), Giza 12566, Egypt.
| | - Enas S Gad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia; Department of Pharmacology and Toxicology, faculty of Pharmacy, Sinai University-Kantara branch, Ismailia, Egypt
| | - Suzan M M Moursi
- Medical Physiology Department, Faculty of Medicine, Zagazig University, 44519, Egypt.
| | - Asmaa Gohar
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University, sixth of October city, Giza, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala City, Suez, 43713, Egypt.
| | - Ayah M H Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| |
Collapse
|
8
|
Coca A, Bustamante-Munguira E, Fidalgo V, Fernández M, Abad C, Franco M, González-Pinto Á, Pereda D, Cánovas S, Bustamante-Munguira J. EValuating the Effect of periopeRaTIve empaGliflOzin on cardiac surgery associated acute kidney injury: rationale and design of the VERTIGO study. Clin Kidney J 2024; 17:sfae229. [PMID: 39139185 PMCID: PMC11320594 DOI: 10.1093/ckj/sfae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Indexed: 08/15/2024] Open
Abstract
Background Cardiac surgery-associated acute kidney injury (CSA-AKI) is a serious complication in patients undergoing cardiac surgery with extracorporeal circulation (ECC) that increases postoperative complications and mortality. CSA-AKI develops due to a combination of patient- and surgery-related risk factors that enhance renal ischemia-reperfusion injury. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) such as empagliflozin reduce renal glucose reabsorption, improving tubulo-glomerular feedback, reducing inflammation and decreasing intraglomerular pressure. Preclinical studies have observed that SGLT2i may provide significant protection against renal ischemia-reperfusion injury due to their effects on inadequate mitochondrial function, reactive oxygen species activity or renal peritubular capillary congestion, all hallmarks of CSA-AKI. The VERTIGO (EValuating the Effect of periopeRaTIve empaGliflOzin) trial is a Phase 3, investigator-initiated, randomized, double-blind, placebo-controlled, multicenter study that aims to explore whether empagliflozin can reduce the incidence of adverse renal outcomes in cardiac surgery patients. Methods The VERTIGO study (EudraCT: 2021-004938-11) will enroll 608 patients that require elective cardiac surgery with ECC. Patients will be randomly assigned in a 1:1 ratio to receive either empagliflozin 10 mg orally daily or placebo. Study treatment will start 5 days before surgery and will continue during the first 7 days postoperatively. All participants will receive standard care according to local practice guidelines. The primary endpoint of the study will be the proportion of patients that develop major adverse kidney events during the first 90 days after surgery, defined as ≥25% renal function decline, renal replacement therapy initiation or death. Secondary, tertiary and safety endpoints will include rates of AKI during index hospitalization, postoperative complications and observed adverse events. Conclusions The VERTIGO trial will describe the efficacy and safety of empagliflozin in preventing CSA-AKI. Patient recruitment is expected to start in May 2024.
Collapse
Affiliation(s)
- Armando Coca
- Department of Nephrology, Hospital Clínico Universitario, Valladolid, Spain
- Department of Medicine, Dermatology, and Toxicology, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Elena Bustamante-Munguira
- Department of Medicine, Dermatology, and Toxicology, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
- Department of Intensive Care Medicine, Hospital Clínico Universitario, Valladolid, Spain
| | - Verónica Fidalgo
- Department of Nephrology, Hospital Virgen de la Concha, Zamora, Spain
| | - Manuel Fernández
- Department of Cardiovascular Surgery, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Cristina Abad
- Department of Immunology, Hospital Clínico Universitario, Valladolid, Spain
| | - Marta Franco
- Department of Intensive Care Medicine, Hospital Clínico Universitario, Valladolid, Spain
| | - Ángel González-Pinto
- Department of Cardiovascular Surgery, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Daniel Pereda
- Department of Cardiovascular Surgery, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Sergio Cánovas
- Department of Cardiovascular Surgery, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Juan Bustamante-Munguira
- Department of Cardiovascular Surgery, Hospital Clínico Universitario, Valladolid, Spain
- Department of Surgery, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
9
|
Cliff CL, Squires PE, Hills CE. Tonabersat suppresses priming/activation of the NOD-like receptor protein-3 (NLRP3) inflammasome and decreases renal tubular epithelial-to-macrophage crosstalk in a model of diabetic kidney disease. Cell Commun Signal 2024; 22:351. [PMID: 38970061 PMCID: PMC11225428 DOI: 10.1186/s12964-024-01728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Accompanied by activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, aberrant connexin 43 (Cx43) hemichannel-mediated ATP release is situated upstream of inflammasome assembly and inflammation and contributes to multiple secondary complications of diabetes and associated cardiometabolic comorbidities. Evidence suggests there may be a link between Cx43 hemichannel activity and inflammation in the diabetic kidney. The consequences of blocking tubular Cx43 hemichannel-mediated ATP release in priming/activation of the NLRP3 inflammasome in a model of diabetic kidney disease (DKD) was investigated. We examined downstream markers of inflammation and the proinflammatory and chemoattractant role of the tubular secretome on macrophage recruitment and activation. METHODS Analysis of human transcriptomic data from the Nephroseq repository correlated gene expression to renal function in DKD. Primary human renal proximal tubule epithelial cells (RPTECs) and monocyte-derived macrophages (MDMs) were cultured in high glucose and inflammatory cytokines as a model of DKD to assess Cx43 hemichannel activity, NLRP3 inflammasome activation and epithelial-to-macrophage paracrine-mediated crosstalk. Tonabersat assessed a role for Cx43 hemichannels. RESULTS Transcriptomic analysis from renal biopsies of patients with DKD showed that increased Cx43 and NLRP3 expression correlated with declining glomerular filtration rate (GFR) and increased proteinuria. In vitro, Tonabersat blocked glucose/cytokine-dependant increases in Cx43 hemichannel-mediated ATP release and reduced expression of inflammatory markers and NLRP3 inflammasome activation in RPTECs. We observed a reciprocal relationship in which NLRP3 activity exacerbated increased Cx43 expression and hemichannel-mediated ATP release, events driven by nuclear factor kappa-B (NFκB)-mediated priming and Cx43 hemichannel opening, changes blocked by Tonabersat. Conditioned media (CM) from RPTECs treated with high glucose/cytokines increased expression of inflammatory markers in MDMs, an effect reduced when macrophages were pre-treated with Tonabersat. Co-culture using conditioned media from Tonabersat-treated RPTECs dampened macrophage inflammatory marker expression and reduced macrophage migration. CONCLUSION Using a model of DKD, we report for the first time that high glucose and inflammatory cytokines trigger aberrant Cx43 hemichannel activity, events that instigate NLRP3-induced inflammation in RPTECs and epithelial-to-macrophage crosstalk. Recapitulating observations previously reported in diabetic retinopathy, these data suggest that Cx43 hemichannel blockers (i.e., Tonabersat) may dampen multi-system damage observed in secondary complications of diabetes.
Collapse
Affiliation(s)
- C L Cliff
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - P E Squires
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - C E Hills
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK.
| |
Collapse
|
10
|
Ye Z, Zhang J, Xu Z, Li Z, Huang G, Tong B, Xia P, Shen Y, Hu H, Yu P, Xi X. Pioglitazone ameliorates ischemia/reperfusion-induced acute kidney injury via oxidative stress attenuation and NLRP3 inflammasome. Hum Cell 2024; 37:959-971. [PMID: 38607518 DOI: 10.1007/s13577-024-01059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Acute kidney injury (AKI) induced by renal ischemia/reperfusion injury (IRI) is a severe clinical condition. ROS accumulation, antioxidant pathways deficiency, and inflammation are involved in IRI. Pioglitazone (Pio) exerts anti-inflammatory and antioxidant effects. The aim of this study was to explore the protective effects of pioglitazone against IRI-induced AKI. Pathogen-free Sprague-Dawley (SD) rats were arbitrarily divided into four groups: Sham operation group Control (CON) group, CON + Pio group, I/R + Saline group, and I/R + Pio group. In addition, HK-2 cells were subjected to hypoxia and reoxygenation to develop an H/R model for investigation of the protective mechanism of Pio. Pretreatment with pioglitazone in the model rats reduced urea nitrogen and creatinine levels, histopathological scores, and cytotoxicity after IRI. Pioglitazone treatment significantly attenuated renal cell apoptosis, decreased cytotoxicity, increased Bcl-2 expression, and downregulated Bax expression. Besides, the levels of ROS and inflammatory factors, including NLRP3, ASC, pro-IL-1β, pro-caspase-1, cleaved-caspase-1, TNF-α, IL-6, and IL-1β, in I/R rats and H/R cells were normalized by the pioglitazone treatment. Pioglitazone improved IRI-induced AKI by attenuating oxidative stress and NLRP3 inflammasome activation. Therefore, pioglitazone has the potential to serve as a novel agent for renal IRI treatment and prevention.
Collapse
Affiliation(s)
- Zhenfeng Ye
- Department of Urology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Jiangxi, 330006, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, Nanchang, China
| | - Zhou Xu
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Jiangxi, Nanchang, China
| | - Zhangwang Li
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Jiangxi, Nanchang, China
| | - Gaomin Huang
- Department of Urology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Jiangxi, 330006, Nanchang, China
| | - Bin Tong
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Jiangxi, Nanchang, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Jiangxi, 330006, Nanchang, China
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, Nanchang, China
| | - Honglin Hu
- Department of Urology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Jiangxi, 330006, Nanchang, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, Nanchang, China.
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Jiangxi, 330006, Nanchang, China.
| | - Xiaoqing Xi
- Department of Urology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Jiangxi, 330006, Nanchang, China.
| |
Collapse
|
11
|
Zhou X, Ji S, Chen L, Liu X, Deng Y, You Y, Wang M, He Q, Peng B, Yang Y, Chen X, Kwan HY, Zhou L, Chen J, Zhao X. Gut microbiota dysbiosis in hyperuricaemia promotes renal injury through the activation of NLRP3 inflammasome. MICROBIOME 2024; 12:109. [PMID: 38907332 PMCID: PMC11191305 DOI: 10.1186/s40168-024-01826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/29/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND The prevalence of hyperuricaemia (HUA), a metabolic disorder characterized by elevated levels of uric acid, is on the rise and is frequently associated with renal injury. Gut microbiota and gut-derived uremic toxins are critical mediators in the gut-kidney axis that can cause damage to kidney function. Gut dysbiosis has been implicated in various kidney diseases. However, the role and underlying mechanism of the gut microbiota in HUA-induced renal injury remain unknown. RESULTS A HUA rat model was first established by knocking out the uricase (UOX). HUA rats exhibited apparent renal dysfunction, renal tubular injury, fibrosis, NLRP3 inflammasome activation, and impaired intestinal barrier functions. Analysis of 16S rRNA sequencing and functional prediction data revealed an abnormal gut microbiota profile and activation of pathways associated with uremic toxin production. A metabolomic analysis showed evident accumulation of gut-derived uremic toxins in the kidneys of HUA rats. Furthermore, faecal microbiota transplantation (FMT) was performed to confirm the effects of HUA-induced gut dysbiosis on renal injury. Mice recolonized with HUA microbiota exhibited severe renal injury and impaired intestinal barrier functions following renal ischemia/reperfusion (I/R) surgery. Notably, in NLRP3-knockout (NLRP3-/-) I/R mice, the deleterious effects of the HUA microbiota on renal injury and the intestinal barrier were eliminated. CONCLUSION Our results demonstrate that HUA-induced gut dysbiosis contributes to the development of renal injury, possibly by promoting the production of gut-derived uremic toxins and subsequently activating the NLRP3 inflammasome. Our data suggest a potential therapeutic strategy for the treatment of renal diseases by targeting the gut microbiota and the NLRP3 inflammasome. Video Abstract.
Collapse
Affiliation(s)
- Xinghong Zhou
- Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, China
| | - Shuai Ji
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Liqian Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyu Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yijian Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yanting You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ming Wang
- Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China
| | - Qiuxing He
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, China
| | - Baizhao Peng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ying Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaohu Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Lin Zhou
- Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China.
| | - Jieyu Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaoshan Zhao
- Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China.
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
12
|
Yang K, Liu J, He T, Dong W. Caffeine and neonatal acute kidney injury. Pediatr Nephrol 2024; 39:1355-1367. [PMID: 37665410 DOI: 10.1007/s00467-023-06122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023]
Abstract
Acute kidney injury is one of the most threatening diseases in neonates, with complex pathogenesis and limited treatment options. Caffeine is a commonly used central nervous system stimulant for treating apnea in preterm infants. There is compelling evidence that caffeine may have potential benefits for preventing neonatal acute kidney injury, but comprehensive reports are lacking in this area. Hence, this review aims to provide a summary of clinical data on the potential benefits of caffeine in improving neonatal acute kidney injury. Additionally, it delves into the molecular mechanisms underlying caffeine's effects on acute kidney injury, with a focus on various aspects such as oxidative stress, adenosine receptors, mitochondrial dysfunction, endoplasmic reticulum stress, inflammasome, autophagy, p53, and gut microbiota. The ultimate goal of this review is to provide information for healthcare professionals regarding the link between caffeine and neonatal acute kidney injury and to identify gaps in our current understanding.
Collapse
Affiliation(s)
- Kun Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Jinjing Liu
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Ting He
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China.
| |
Collapse
|
13
|
Zheng L, Mei W, Zhou J, Wei X, Huang Z, Lin X, Zhang L, Liu W, Wu Q, Li J, Yan Y. Fluorofenidone attenuates renal fibrosis by inhibiting lysosomal cathepsin‑mediated NLRP3 inflammasome activation. Exp Ther Med 2024; 27:142. [PMID: 38476910 PMCID: PMC10928820 DOI: 10.3892/etm.2024.12430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Currently, no antifibrotic drug in clinical use can effectively treat renal fibrosis. Fluorofenidone (AKFPD), a novel pyridone agent, significantly reduces renal fibrosis by inhibiting the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome; however, the underlying mechanism of this inhibition is not fully understood. The present study aimed to reveal the molecular mechanism underlying the suppression of NLRP3 inflammasome activation by AKFPD. It investigated the effect of AKFPD on NLRP3 activation and lysosomal cathepsins in a unilateral ureteral obstruction (UUO) rat model, and hypoxia/reoxygenation (H/R)-treated HK-2 cells and murine peritoneal-derived macrophages (PDMs) stimulated with lipopolysaccharide (LPS) and ATP. The results confirmed that AKFPD suppressed renal interstitial fibrosis and inflammation by inhibiting NLRP3 inflammasome activation in UUO rat kidney tissues. In addition, AKFPD reduced the production of activated caspase-1 and maturation of IL-1β by suppressing NLRP3 inflammasome activation in H/R-treated HK-2 cells and murine PDMs stimulated with LPS and ATP. AKFPD also decreased the activities of cathepsins B, L and S both in vivo and in vitro. Notably, AKFPD downregulated cathepsin B expression and NLRP3 colocalization in the cytoplasm after lysosomal disruptions. Overall, the results suggested that AKFPD attenuates renal fibrosis by inhibiting lysosomal cathepsin-mediated activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Linfeng Zheng
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenjuan Mei
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jing Zhou
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xin Wei
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhijuan Huang
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaozhen Lin
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li Zhang
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Liu
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qian Wu
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jinhong Li
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yan Yan
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
14
|
Li H, Gong J, Bian F, Yu F, Yuan H, Hu F. The role and mechanism of NLRP3 in wasp venom-induced acute kidney injury. Toxicon 2024; 238:107570. [PMID: 38103798 DOI: 10.1016/j.toxicon.2023.107570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Inflammation and pyroptosis have crucial impacts on the development of acute kidney injury (AKI) and have been validated in a variety of existing AKI animal models. However, the mechanisms underlying wasp venom-induced AKI are still unclear. The involvement of nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) in some mouse models of AKI has been extensively documented, and its crucial function in controlling inflammation and pyroptosis has been highlighted. The objective of our study was to investigate the role and mechanism of NLRP3 in inflammation and pyroptosis associated with wasp venom-induced AKI. METHODS A mouse model of AKI induced by wasp venom pre-injected with an NLRP3 inhibitor was used to study the role and mechanism of NLRP3. To verify the importance of NLRP3, western blotting was performed to assess the expression of NLRP3, caspase-1 p20, and gasdermin D (GSDMD)-N. Additionally, quantitative real-time polymerase was used to determine the expression of NLRP3, caspase-1, and GSDMD. Furthermore, enzyme-linked immunosorbent assay was utilized to measure the levels of interleukin (IL)-1β and IL-18. RESULTS NLRP3 was found to be the downstream signal of the stimulator of interferon genes in the wasp sting venom-induced AKI model. The administration of wasp venom in mice significantly upregulated the expression of NLRP3, leading to renal dysfunction, inflammation, and pyroptosis. Treatment with an NLRP3 inhibitor reversed the renal damage induced by wasp venom and attenuated pathological injury, inflammatory response, and pyroptosis. CONCLUSION NLRP3 activation is associated with renal failure, inflammatory response and pyroptosis in the hyper early phase of wasp venom-induced AKI. The inhibition of NLRP3 significantly weakened this phenomenon. These findings could potentially offer a viable therapeutic approach for AKI triggered by wasp venom.
Collapse
Affiliation(s)
- Haoran Li
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jianhua Gong
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Fang Bian
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Fanglin Yu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Hai Yuan
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China.
| | - Fengqi Hu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China.
| |
Collapse
|
15
|
Granata S, La Russa D, Stallone G, Perri A, Zaza G. Inflammasome pathway in kidney transplantation. Front Med (Lausanne) 2023; 10:1303110. [PMID: 38020086 PMCID: PMC10663322 DOI: 10.3389/fmed.2023.1303110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Kidney transplantation is the best available renal replacement therapy for patients with end-stage kidney disease and is associated with better quality of life and patient survival compared with dialysis. However, despite the significant technical and pharmaceutical advances in this field, kidney transplant recipients are still characterized by reduced long-term graft survival. In fact, almost half of the patients lose their allograft after 15-20 years. Most of the conditions leading to graft loss are triggered by the activation of a large immune-inflammatory machinery. In this context, several inflammatory markers have been identified, and the deregulation of the inflammasome (NLRP3, NLRP1, NLRC4, AIM2), a multiprotein complex activated by either whole pathogens (including fungi, bacteria, and viruses) or host-derived molecules, seems to play a pivotal pathogenetic role. However, the biological mechanisms leading to inflammasome activation in patients developing post-transplant complications (including, ischemia-reperfusion injury, rejections, infections) are still largely unrecognized, and only a few research reports, reviewed in this manuscript, have addressed the association between abnormal activation of this pathway and the onset/development of major clinical effects. Finally, the regulation of the inflammasome machinery could represent in future a valuable therapeutic target in kidney transplantation.
Collapse
Affiliation(s)
- Simona Granata
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Daniele La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Anna Perri
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Gianluigi Zaza
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
16
|
Accogli T, Hibos C, Vegran F. Canonical and non-canonical functions of NLRP3. J Adv Res 2023; 53:137-151. [PMID: 36610670 PMCID: PMC10658328 DOI: 10.1016/j.jare.2023.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Since its discovery, NLRP3 is almost never separated from its major role in the protein complex it forms with ASC, NEK7 and Caspase-1, the inflammasome. This key component of the innate immune response mediates the secretion of proinflammatory cytokines IL-1β and IL-18 involved in immune response to microbial infection and cellular damage. However, NLRP3 has also other functions that do not involve the inflammasome assembly nor the innate immune response. These non-canonical functions have been poorly studied. Nevertheless, NLRP3 is associated with different kind of diseases probably through its inflammasome dependent function as through its inflammasome independent functions. AIM OF THE REVIEW The study and understanding of the canonical and non-canonical functions of NLRP3 can help to better understand its involvement in various pathologies. In parallel, the description of the mechanisms of action and regulation of its various functions, can allow the identification of new therapeutic strategies. KEY SCIENTIFIC CONCEPTS OF THE REVIEW NLRP3 functions have mainly been studied in the context of the inflammasome, in myeloid cells and in totally deficient transgenic mice. However, for several year, the work of different teams has proven that NLRP3 is also expressed in other cell types where it has functions that are independent of the inflammasome. If these studies suggest that NLRP3 could play different roles in the cytoplasm or the nucleus of the cells, the mechanisms underlying NLRP3 non-canonical functions remain unclear. This is why we propose in this review an inventory of the canonical and non-canonical functions of NLRP3 and their impact in different pathologies.
Collapse
Affiliation(s)
- Théo Accogli
- Faculté des Sciences de Santé- University of Burgundy, Dijon 21000, FRANCE; CAdIR Team - Centre de Recherche INSERM - UMR 1231, Dijon 21000, FRANCE
| | - Christophe Hibos
- Faculté des Sciences de Santé- University of Burgundy, Dijon 21000, FRANCE; CAdIR Team - Centre de Recherche INSERM - UMR 1231, Dijon 21000, FRANCE; Université de Bourgogne Franche-Comté, Dijon 21000, FRANCE
| | - Frédérique Vegran
- Faculté des Sciences de Santé- University of Burgundy, Dijon 21000, FRANCE; CAdIR Team - Centre de Recherche INSERM - UMR 1231, Dijon 21000, FRANCE; Department of Biology and Pathology of Tumors - Centre anticancéreux GF Leclerc, Dijon 21000, FRANCE.
| |
Collapse
|
17
|
Amador-Martínez I, Aparicio-Trejo OE, Bernabe-Yepes B, Aranda-Rivera AK, Cruz-Gregorio A, Sánchez-Lozada LG, Pedraza-Chaverri J, Tapia E. Mitochondrial Impairment: A Link for Inflammatory Responses Activation in the Cardiorenal Syndrome Type 4. Int J Mol Sci 2023; 24:15875. [PMID: 37958859 PMCID: PMC10650149 DOI: 10.3390/ijms242115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiorenal syndrome type 4 (CRS type 4) occurs when chronic kidney disease (CKD) leads to cardiovascular damage, resulting in high morbidity and mortality rates. Mitochondria, vital organelles responsible for essential cellular functions, can become dysfunctional in CKD. This dysfunction can trigger inflammatory responses in distant organs by releasing Damage-associated molecular patterns (DAMPs). These DAMPs are recognized by immune receptors within cells, including Toll-like receptors (TLR) like TLR2, TLR4, and TLR9, the nucleotide-binding domain, leucine-rich-containing family pyrin domain-containing-3 (NLRP3) inflammasome, and the cyclic guanosine monophosphate (cGMP)-adenosine monophosphate (AMP) synthase (cGAS)-stimulator of interferon genes (cGAS-STING) pathway. Activation of these immune receptors leads to the increased expression of cytokines and chemokines. Excessive chemokine stimulation results in the recruitment of inflammatory cells into tissues, causing chronic damage. Experimental studies have demonstrated that chemokines are upregulated in the heart during CKD, contributing to CRS type 4. Conversely, chemokine inhibitors have been shown to reduce chronic inflammation and prevent cardiorenal impairment. However, the molecular connection between mitochondrial DAMPs and inflammatory pathways responsible for chemokine overactivation in CRS type 4 has not been explored. In this review, we delve into mechanistic insights and discuss how various mitochondrial DAMPs released by the kidney during CKD can activate TLRs, NLRP3, and cGAS-STING immune pathways in the heart. This activation leads to the upregulation of chemokines, ultimately culminating in the establishment of CRS type 4. Furthermore, we propose using chemokine inhibitors as potential strategies for preventing CRS type 4.
Collapse
Affiliation(s)
- Isabel Amador-Martínez
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (I.A.-M.); (A.K.A.-R.)
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| | - Bismarck Bernabe-Yepes
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Ana Karina Aranda-Rivera
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (I.A.-M.); (A.K.A.-R.)
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Alfredo Cruz-Gregorio
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Edilia Tapia
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| |
Collapse
|
18
|
Frąk W, Kućmierz J, Szlagor M, Młynarska E, Rysz J, Franczyk B. New Insights into Molecular Mechanisms of Chronic Kidney Disease. Biomedicines 2022; 10:2846. [PMID: 36359366 PMCID: PMC9687691 DOI: 10.3390/biomedicines10112846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 12/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a major public health problem with a developing incidence and prevalence. As a consequence of the growing number of patients diagnosed with renal dysfunction leading to the development of CKD, it is particularly important to explain the mechanisms of its underlying causes. In our paper, we discuss the molecular mechanisms of the development and progression of CKD, focusing on oxidative stress, the role of the immune system, neutrophil gelatinase-associated lipocalin, and matrix metalloproteinases. Moreover, growing evidence shows the importance of the role of the gut-kidney axis in the maintenance of normal homeostasis and of the dysregulation of this axis in CKD. Further, we discuss the therapeutic potential and highlight the future research directions for the therapeutic targeting of CKD. However, additional investigation is crucial to improve our knowledge of CKD progression and, more importantly, accelerate basic research to improve our understanding of the mechanism of pathophysiology.
Collapse
Affiliation(s)
- Weronika Frąk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Kućmierz
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Magdalena Szlagor
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
19
|
Ghafouri-Fard S, Shoorei H, Poornajaf Y, Hussen BM, Hajiesmaeili Y, Abak A, Taheri M, Eghbali A. NLRP3: Role in ischemia/reperfusion injuries. Front Immunol 2022; 13:926895. [PMID: 36238294 PMCID: PMC9552576 DOI: 10.3389/fimmu.2022.926895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/01/2022] [Indexed: 12/05/2022] Open
Abstract
NLR family pyrin domain containing 3 (NLRP3) is expressed in immune cells, especially in dendritic cells and macrophages and acts as a constituent of the inflammasome. This protein acts as a pattern recognition receptor identifying pathogen-associated molecular patterns. In addition to recognition of pathogen-associated molecular patterns, it recognizes damage-associated molecular patterns. Triggering of NLRP3 inflammasome by molecules ATP released from injured cells results in the activation of the inflammatory cytokines IL-1β and IL-18. Abnormal activation of NLRP3 inflammasome has been demonstrated to stimulate inflammatory or metabolic diseases. Thus, NLRP3 is regarded as a proper target for decreasing activity of NLRP3 inflammasome. Recent studies have also shown abnormal activity of NLRP3 in ischemia/reperfusion (I/R) injuries. In the current review, we have focused on the role of this protein in I/R injuries in the gastrointestinal, neurovascular and cardiovascular systems.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | | | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri, ; Ahmad Eghbali,
| | - Ahmad Eghbali
- Anesthesiology Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Ahmad Eghbali,
| |
Collapse
|
20
|
Su X, Liu B, Wang S, Wang Y, Zhang Z, Zhou H, Li F. NLRP3 inflammasome: A potential therapeutic target to minimize renal ischemia/reperfusion injury during transplantation. Transpl Immunol 2022; 75:101718. [PMID: 36126906 DOI: 10.1016/j.trim.2022.101718] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/30/2022]
Abstract
Renal transplantation is currently the best treatment option for patients with end-stage kidney disease. Ischemia/reperfusion injury (IRI), which is an inevitable event during renal transplantation, has a profound impact on the function of transplanted kidneys. It has been well demonstrated that innate immune system plays an important role in the process of renal IRI. As a critical component of innate immune system, Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome has received great attention from scientific community over the past decade. The main function of NLRP3 inflammasome is mediating activation of caspase-1 and maturation of interleukin (IL)-1β and IL-18. In this review, we summarize the associated molecular signaling events about NLRP3 inflammasome in renal IRI, and highlight the possibility of targeting NLRP3 inflammasome to minimize renal IRI during transplantation.
Collapse
Affiliation(s)
- Xiaochen Su
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Bin Liu
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Shangguo Wang
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yuxiong Wang
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Zehua Zhang
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Honglan Zhou
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Faping Li
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
21
|
Zhang J, Fu Y, Yang B, Xiang X. Total glucosides of paeony inhibits liver fibrosis and inflammatory response associated with cirrhosis via the FLI1/NLRP3 axis. Am J Transl Res 2022; 14:4321-4336. [PMID: 35836848 PMCID: PMC9274563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Total glucosides of paeony (TGP) has a myriad of hepatoprotective activities. However, its role in cirrhosis, a major risk factor for hepatocellular carcinoma, remains largely unexplored. Here, we determined the impact of TGP on liver fibrosis and inflammation in mice modeled by carbon tetrachloride with an aim to explore a possible molecular mechanism. METHODS Liver fibrosis and inflammation in mice were evaluated using ELISA, hematoxylin-eosin, Masson's trichrome, immunohistochemical staining and TUNEL methods. The impact of TGP on gene expression in the liver tissues of the mice was investigated using microarray analysis, showing the most significant increase in expression of friend leukemia integration 1 transcription factor (FLI1). After loss-of-functions assays of FLI1, the downstream gene of FLI1 was searched by bioinformatics analysis and verified. RESULTS TGP reduced liver tissue damage, inhibited apoptosis, and alleviated liver fibrosis and inflammation in cirrhotic mice. FLI1 was downregulated in the liver of cirrhotic mice and lipopolysaccharide-treated hepatocytes, and TGP promoted the expression of FLI1. FLI1 depletion inhibited the effects of TGP on alleviating liver fibrosis and inflammatory responses in mice. FLI1 repressed Nod-like receptor protein 3 (NLRP3) transcription by binding to its promoter. Further silencing of NLRP3 in the presence of shFLI1 alleviated histopathological changes, inhibited apoptosis, and attenuated liver fibrosis and inflammatory responses in the liver of cirrhotic mice. CONCLUSIONS TGP promotes the expression of FLI1, which in turn inhibits NLRP3 expression, thereby reducing cirrhosis-induced liver fibrosis and inflammatory response in mice.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gastroenterology, Taizhou People’s Hospital Affiliated to Medical College of Yangzhou UniversityTaizhou 225300, Jiangsu, P. R. China
| | - Yiwei Fu
- Department of Gastroenterology, Taizhou People’s Hospital Affiliated to Medical College of Yangzhou UniversityTaizhou 225300, Jiangsu, P. R. China
| | - Bin Yang
- Department of Gastroenterology, Taizhou People’s Hospital Affiliated to Medical College of Yangzhou UniversityTaizhou 225300, Jiangsu, P. R. China
| | - Xiaoxing Xiang
- Yangzhou University Medical CollegeYangzhou 225009, Jiangsu, P. R. China
| |
Collapse
|
22
|
Zhao W, Zhou L, Novák P, Shi X, Lin CB, Zhu X, Yin K. Metabolic Dysfunction in the Regulation of the NLRP3 Inflammasome Activation: A Potential Target for Diabetic Nephropathy. J Diabetes Res 2022; 2022:2193768. [PMID: 35719709 PMCID: PMC9203236 DOI: 10.1155/2022/2193768] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/31/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Metabolic dysfunction plays a key role in the development of diabetic nephropathy (DN). However, the exact effects and mechanisms are still unclear. The pyrin domain-containing protein 3 (NLRP3) inflammasome, a member of the nod-like receptor family, is considered a crucial inflammatory regulator and plays important roles in the progress of DN. A growing body of evidence suggests that high glucose, high fat, or other metabolite disorders can abnormally activate the NLRP3 inflammasome. Thus, in this review, we discuss the potential function of abnormal metabolites such as saturated fatty acids (SFAs), cholesterol crystals, uric acid (UA), and homocysteine in the NLRP3 inflammasome activation and explain the potential function of metabolic dysfunction regulation of NLRP3 activation in the progress of DN via regulation of inflammatory response and renal interstitial fibrosis (RIF). In addition, the potential mechanisms of metabolism-related drugs, such as metformin and sodium glucose cotransporter (SGLT2) inhibitors, which have served as the suppressors of the NLRP3 inflammasomes, in DN, are also discussed. A better understanding of NLRP3 inflammasome activation in abnormal metabolic microenvironment may provide new insights for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Wenli Zhao
- Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, China
| | - Le Zhou
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Petr Novák
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Xian Shi
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Chuang Biao Lin
- Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Kai Yin
- Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, China
| |
Collapse
|