1
|
Bu W, Sun X, Xue X, Geng S, Yang T, Zhang J, Li Y, Feng C, Liu Q, Zhang X, Li P, Liu Z, Shi Y, Shao C. Early onset of pathological polyploidization and cellular senescence in hepatocytes lacking RAD51 creates a pro-fibrotic and pro-tumorigenic inflammatory microenvironment. Hepatology 2025; 81:491-508. [PMID: 38466833 PMCID: PMC11737125 DOI: 10.1097/hep.0000000000000821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND AND AIMS RAD51 recombinase (RAD51) is a highly conserved DNA repair protein and is indispensable for embryonic viability. As a result, the role of RAD51 in liver development and function is unknown. Our aim was to characterize the function of RAD51 in postnatal liver development. APPROACH AND RESULTS RAD51 is highly expressed during liver development and during regeneration following hepatectomy and hepatic injury, and is also elevated in chronic liver diseases. We generated a hepatocyte-specific Rad51 deletion mouse model using Alb -Cre ( Rad51 -conditional knockout (CKO)) and Adeno-associated virus 8-thyroxine-binding globulin-cyclization recombination enzyme to evaluate the function of RAD51 in liver development and regeneration. The phenotype in Rad51 -CKO mice is dependent on CRE dosage, with Rad51fl/fl ; Alb -Cre +/+ manifesting a more severe phenotype than the Rad51fl/fl ; Alb -Cre +/- mice. RAD51 deletion in postnatal hepatocytes results in aborted mitosis and early onset of pathological polyploidization that is associated with oxidative stress and cellular senescence. Remarkable liver fibrosis occurs spontaneously as early as in 3-month-old Rad51fl/fl ; Alb -Cre +/+ mice. While liver regeneration is compromised in Rad51 -CKO mice, they are more tolerant of carbon tetrachloride-induced hepatic injury and resistant to diethylnitrosamine/carbon tetrachloride-induced HCC. A chronic inflammatory microenvironment created by the senescent hepatocytes appears to activate ductular reaction the transdifferentiation of cholangiocytes to hepatocytes. The newly derived RAD51 functional immature hepatocytes proliferate vigorously, acquire increased malignancy, and eventually give rise to HCC. CONCLUSIONS Our results demonstrate a novel function of RAD51 in liver development, homeostasis, and tumorigenesis. The Rad51 -CKO mice represent a unique genetic model for premature liver senescence, fibrosis, and hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- Wenqing Bu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Xue Sun
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Xiaotong Xue
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Shengmiao Geng
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Tingting Yang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Jia Zhang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Yanan Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Chao Feng
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiyu Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peishan Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Zhaojian Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Wei H, Wang Z, Huang Y, Gao L, Wang W, Liu S, Sun Y, Liu H, Weng Y, Fan H, Zhang M. DCAF2 regulates the proliferation and differentiation of mouse progenitor spermatogonia by targeting p21 and thymine DNA glycosylase. Cell Prolif 2024; 57:e13676. [PMID: 38837535 PMCID: PMC11471390 DOI: 10.1111/cpr.13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/24/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024] Open
Abstract
DDB1-Cullin-4-associated factor-2 (DCAF2, also known as DTL or CDT2), a conserved substrate recognition protein of Cullin-RING E3 ligase 4 (CRL4), recognizes and degrades several substrate proteins during the S phase to maintain cell cycle progression and genome stability. Dcaf2 mainly expressed in germ cells of human and mouse. Our study found that Dcaf2 was expressed in mouse spermatogonia and spermatocyte. The depletion of Dcaf2 in germ cells by crossing Dcaf2fl/fl mice with stimulated by retinoic acid gene 8(Stra8)-Cre mice caused a reduction in progenitor spermatogonia and differentiating spermatogonia, eventually leading to the failure of meiosis initiation and male infertility. Further studies showed that depletion of Dcaf2 in germ cells caused abnormal accumulation of the substrate proteins, cyclin-dependent kinase inhibitor 1A (p21) and thymine DNA glycosylase (TDG), decreasing of cell proliferation, increasing of DNA damage and apoptosis. Overexpression of p21 or TDG attenuates proliferation and increases DNA damage and apoptosis in GC-1 cells, which is exacerbated by co-overexpression of p21 and TDG. The findings indicate that DCAF2 maintains the proliferation and differentiation of progenitor spermatogonia by targeting the substrate proteins p21 and TDG during the S phase.
Collapse
Affiliation(s)
- Hongwei Wei
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Zhijuan Wang
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Yating Huang
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Longwei Gao
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Weiyong Wang
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Shuang Liu
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Yan‐Li Sun
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Huiyu Liu
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Yashuang Weng
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Heng‐Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling NetworkLife Sciences Institute, Zhejiang UniversityHangzhouChina
| | - Meijia Zhang
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| |
Collapse
|
3
|
Zhang YW, Wu SX, Wang GW, Wan RD, Yang QE. Single-cell analysis identifies critical regulators of spermatogonial development and differentiation in cattle-yak bulls. J Dairy Sci 2024; 107:7317-7336. [PMID: 38642661 DOI: 10.3168/jds.2023-24442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/11/2024] [Indexed: 04/22/2024]
Abstract
Spermatogenesis is a continuous process in which functional sperm are produced through a series of mitotic and meiotic divisions and morphological changes in germ cells. The aberrant development and fate transitions of spermatogenic cells cause hybrid sterility in mammals. Cattle-yak, a hybrid animal between taurine cattle (Bos taurus) and yak (Bos grunniens), exhibits male-specific sterility due to spermatogenic failure. In the present study, we performed single-cell RNA sequencing analysis to identify differences in testicular cell composition and the developmental trajectory of spermatogenic cells between yak and cattle-yak. The composition and molecular signatures of spermatogonial subtypes were dramatically different between these 2 animals, and the expression of genes associated with stem cell maintenance, cell differentiation and meiotic entry was altered in cattle-yak, indicating the impairment of undifferentiated spermatogonial fate decisions. Cell communication analysis revealed that signaling within different spermatogenic cell subpopulations was weakened, and progenitor spermatogonia were unable to or delayed receiving and sending signals for transformation to the next stage in cattle-yak. Simultaneously, the communication between niche cells and germ cells was also abnormal. Collectively, we obtained the expression profiles of transcriptome signatures of different germ cells and testicular somatic cell populations at the single-cell level and identified critical regulators of spermatogonial differentiation and meiosis in yak and sterile cattle-yak. The findings of this study shed light on the genetic mechanisms that lead to hybrid sterility and speciation in bovid species.
Collapse
Affiliation(s)
- Yi-Wen Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Xin Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guo-Wen Wang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Xining, Qinghai 810016, China
| | - Rui-Dong Wan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China.
| |
Collapse
|
4
|
Yin H, Zhou Z, Fu C. Fance deficiency impaired DNA damage repair of prospermatogonia and altered the repair dynamics of spermatocytes. Reprod Biol Endocrinol 2024; 22:113. [PMID: 39210375 PMCID: PMC11360510 DOI: 10.1186/s12958-024-01284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Non-obstructive azoospermia (NOA) is the most severe form of male infertility and affects approximately 1% of men worldwide. Fanconi anemia (FA) genes were known for their essential role in DNA repair and growing evidence showed the crucial role of FA pathway in NOA. However, the underlying mechanisms for Fance deficiency lead to a serious deficit and delayed maturation of male germ cells remain unclear. METHODS We used Fance deficiency mouse model for experiments, and collected testes or epididymides from mice at 8 weeks (8W), 17.5 days post coitum (dpc), and postnatal 11 (P11) to P23. The mice referred to three genotypes: wildtype (Fance +/+), heterozygous (Fance +/-), and homozygous (Fance -/-). Hematoxylin and eosin staining, immunofluorescence staining, and surface spread of spermatocytes were performed to explore the mechanisms for NOA of Fance -/- mice. Each experiment was conducted with a minimum of three biological replicates and Kruskal-Wallis with Dunn's correction was used for statistical analysis. RESULTS In the present study, we found that the adult male Fance -/- mice exhibited massive germ cell loss in seminiferous tubules and dramatically decreased sperms in epididymides. During the embryonic period, the number of Fance -/- prospermatogonia decreased significantly, without impacts on the proliferation (Ki-67, PCNA) and apoptosis (cleaved PARP, cleaved Caspase 3) status. The DNA double-strand breaks (γH2AX) increased at the cellular level of Fance -/- prospermatogonia, potentially associated with the increased nonhomologous end joining (53BP1) and decreased homologous recombination (RAD51) activity. Besides, Fance deficiency impeded the progression of meiotic prophase I of spermatocytes. The mechanisms entailed the reduced recruitment of the DNA end resection protein RPA2 at leptotene and recombinases RAD51 and DMC1 at zygotene. It also involved impaired removal of RPA2 at zygotene and FANCD2 foci at pachytene. And the accelerated initial formation of crossover at early pachytene, which is indicated by MLH1. CONCLUSIONS Fance deficiency caused massive male germ cell loss involved in the imbalance of DNA damage repair in prospermatogonia and altered dynamics of proteins in homologous recombination, DNA end resection, and crossover, providing new insights into the etiology and molecular basis of NOA.
Collapse
Affiliation(s)
- Huan Yin
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Gynecological Disease in Hunan Province, Hunan Province, Changsha, China
| | - Zhixian Zhou
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Gynecological Disease in Hunan Province, Hunan Province, Changsha, China
| | - Chun Fu
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, China.
- Clinical Research Center for Gynecological Disease in Hunan Province, Hunan Province, Changsha, China.
| |
Collapse
|
5
|
Zhang Y, Yang A, Zhao Z, Chen F, Yan X, Han Y, Wu D, Wu Y. Protein disulfide isomerase is essential for spermatogenesis in mice. JCI Insight 2024; 9:e177743. [PMID: 38912589 PMCID: PMC11383184 DOI: 10.1172/jci.insight.177743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Spermatogenesis requires precise posttranslational control in the endoplasmic reticulum (ER), but the mechanism remains largely unknown. The protein disulfide isomerase (PDI) family is a group of thiol oxidoreductases responsible for catalyzing the disulfide bond formation of nascent proteins. In this study, we generated 14 strains of KO mice lacking the PDI family enzymes and found that only PDI deficiency caused spermatogenesis defects. Both inducible whole-body PDI-KO (UBC-Cre/Pdifl/fl) mice and premeiotic PDI-KO (Stra8-Cre/Pdifl/fl) mice experienced a significant decrease in germ cells, testicular atrophy, oligospermia, and complete male infertility. Stra8-Cre/Pdifl/fl spermatocytes had significantly upregulated ER stress-related proteins (GRP78 and XBP1) and apoptosis-related proteins (Cleaved caspase-3 and BAX), together with cell apoptosis. PDI deletion led to delayed DNA double-strand break repair and improper crossover at the pachytene spermatocytes. Quantitative mass spectrometry indicated that PDI deficiency downregulated vital proteins in spermatogenesis such as HSPA4L, SHCBP1L, and DDX4, consistent with the proteins' physical association with PDI in normal testes tissue. Furthermore, PDI served as a thiol oxidase for disulfide bond formation of SHCBP1L. Thus, PDI plays an essential role in protein quality control for spermatogenesis in mice.
Collapse
Affiliation(s)
- Yaqiong Zhang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Aizhen Yang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Zhenzhen Zhao
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Fengwu Chen
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Xiaofeng Yan
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Wu
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| |
Collapse
|
6
|
Xu H, Zhang Y, Wang C, Fu Z, Lv J, Yang Y, Zhang Z, Qi Y, Meng K, Yuan J, Wang X. Research progress on the fanconi anemia signaling pathway in non-obstructive azoospermia. Front Endocrinol (Lausanne) 2024; 15:1393111. [PMID: 38846492 PMCID: PMC11153779 DOI: 10.3389/fendo.2024.1393111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
Non-obstructive azoospermia (NOA) is a disease characterized by spermatogenesis failure and comprises phenotypes such as hypospermatogenesis, mature arrest, and Sertoli cell-only syndrome. Studies have shown that FA cross-linked anemia (FA) pathway is closely related to the occurrence of NOA. There are FA gene mutations in male NOA patients, which cause significant damage to male germ cells. The FA pathway is activated in the presence of DNA interstrand cross-links; the key step in activating this pathway is the mono-ubiquitination of the FANCD2-FANCI complex, and the activation of the FA pathway can repair DNA damage such as DNA double-strand breaks. Therefore, we believe that the FA pathway affects germ cells during DNA damage repair, resulting in minimal or even disappearance of mature sperm in males. This review summarizes the regulatory mechanisms of FA-related genes in male azoospermia, with the aim of providing a theoretical reference for clinical research and exploration of related genes.
Collapse
Affiliation(s)
- Haohui Xu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Caiqin Wang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zhuoyan Fu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Jing Lv
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Yufang Yang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Mental Health, Jining Medical University, Jining, China
| | - Zihan Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yuanmin Qi
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Kai Meng
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Jinxiang Yuan
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China
| |
Collapse
|
7
|
Liang M, Sheng L, Ke Y, Wu Z. The research progress on radiation resistance of cervical cancer. Front Oncol 2024; 14:1380448. [PMID: 38651153 PMCID: PMC11033433 DOI: 10.3389/fonc.2024.1380448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Cervical carcinoma is the most prevalent gynecology malignant tumor and ranks as the fourth most common cancer worldwide, thus posing a significant threat to the lives and health of women. Advanced and early-stage cervical carcinoma patients with high-risk factors require adjuvant treatment following surgery, with radiotherapy being the primary approach. However, the tolerance of cervical cancer to radiotherapy has become a major obstacle in its treatment. Recent studies have demonstrated that radiation resistance in cervical cancer is closely associated with DNA damage repair pathways, the tumor microenvironment, tumor stem cells, hypoxia, cell cycle arrest, and epigenetic mechanisms, among other factors. The development of tumor radiation resistance involves complex interactions between multiple genes, pathways, and mechanisms, wherein each factor interacts through one or more signaling pathways. This paper provides an overview of research progress on an understanding of the mechanism underlying radiation resistance in cervical cancer.
Collapse
Affiliation(s)
| | | | - Yumin Ke
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhuna Wu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
8
|
Sahota JS, Thakur RS, Guleria K, Sambyal V. RAD51 and Infertility: A Review and Case-Control Study. Biochem Genet 2024; 62:1216-1230. [PMID: 37563467 DOI: 10.1007/s10528-023-10469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023]
Abstract
RAD51 is a highly conserved recombinase involved in the strand invasion/exchange of double-stranded DNA by homologous single-stranded DNA during homologous recombination repair. Although a majority of existing literature associates RAD51 with the pathogenesis of various types of cancer, recent reports indicate a role of RAD51 in maintenance of fertility. The present study reviews the role of RAD51 and its interacting proteins in spermatogenesis/oogenesis and additionally reports the findings from the molecular genetic screening of RAD51 135 G > C polymorphism in infertile cases and controls. Fifty-nine articles from PubMed and Google Scholar related to the reproductive role of RAD51 were reviewed. For case-control study, the PCR-RFLP method was used to screen the RAD51 135 G > C polymorphism in 201 infertile cases (100 males, 101 females) and 201 age- and gender-matched healthy controls (100 males, 101 females) from Punjab, North-West India. The review of literature shows that RAD51 is indispensable for spermatogenesis and oogenesis in animal models. Reports on the role of RAD51 in human fertility are limited, however it is involved in the pathogenesis of infertility in both males and females. Molecular genetic analyses in the infertile cases and healthy controls showed no statistically significant difference in the genotypic and allelic frequencies for RAD51 135 G > C polymorphism, even after segregation of the cases by type of infertility (primary/secondary). Therefore, the present study concluded that the RAD51 135 G > C polymorphism was neither associated with male nor female infertility in North-West Indians. This is the first report on RAD51 135 G > C polymorphism and infertility.
Collapse
Affiliation(s)
- Jatinder Singh Sahota
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, 143005, Punjab, India
| | - Ranveer Singh Thakur
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, 143005, Punjab, India
| | - Kamlesh Guleria
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, 143005, Punjab, India
| | - Vasudha Sambyal
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, 143005, Punjab, India.
| |
Collapse
|
9
|
Sun L, Lv Z, Chen X, Ye R, Tian S, Wang C, Xie X, Yan L, Yao X, Shao Y, Cui S, Chen J, Liu J. Splicing factor SRSF1 is essential for homing of precursor spermatogonial stem cells in mice. eLife 2024; 12:RP89316. [PMID: 38271475 PMCID: PMC10945694 DOI: 10.7554/elife.89316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Spermatogonial stem cells (SSCs) are essential for continuous spermatogenesis and male fertility. The underlying mechanisms of alternative splicing (AS) in mouse SSCs are still largely unclear. We demonstrated that SRSF1 is essential for gene expression and splicing in mouse SSCs. Crosslinking immunoprecipitation and sequencing data revealed that spermatogonia-related genes (e.g. Plzf, Id4, Setdb1, Stra8, Tial1/Tiar, Bcas2, Ddx5, Srsf10, Uhrf1, and Bud31) were bound by SRSF1 in the mouse testes. Specific deletion of Srsf1 in mouse germ cells impairs homing of precursor SSCs leading to male infertility. Whole-mount staining data showed the absence of germ cells in the testes of adult conditional knockout (cKO) mice, which indicates Sertoli cell-only syndrome in cKO mice. The expression of spermatogonia-related genes (e.g. Gfra1, Pou5f1, Plzf, Dnd1, Stra8, and Taf4b) was significantly reduced in the testes of cKO mice. Moreover, multiomics analysis suggests that SRSF1 may affect survival of spermatogonia by directly binding and regulating Tial1/Tiar expression through AS. In addition, immunoprecipitation mass spectrometry and co-immunoprecipitation data showed that SRSF1 interacts with RNA splicing-related proteins (e.g. SART1, RBM15, and SRSF10). Collectively, our data reveal the critical role of SRSF1 in spermatogonia survival, which may provide a framework to elucidate the molecular mechanisms of the posttranscriptional network underlying homing of precursor SSCs.
Collapse
Affiliation(s)
- Longjie Sun
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Zheng Lv
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Xuexue Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Rong Ye
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Shuang Tian
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Chaofan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Xiaomei Xie
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Lu Yan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Xiaohong Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Yujing Shao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou UniversityJiangsuChina
| | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China, Agricultural UniversityBeijingChina
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| |
Collapse
|
10
|
Xu J, Guo Y, Tan Z, Ban W, Tian J, Chen K, Xu H. Molecular cloning and expression analysis of rad51 gene associated with gametogenesis in Chinese soft-shell turtle (Pelodiscus sinensis). Gene 2023; 887:147729. [PMID: 37619650 DOI: 10.1016/j.gene.2023.147729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Rad51 is a recA-like recombinase that plays a crucial role in repairing DNA double-strand breaks through homologous recombination during mitosis and meiosis in mammals and other organisms. However, its role in reptiles remains largely unclear. In this study, we aimed to investigate the physiological role of the rad51 gene in reptiles, particularly in Pelodiscus sinensis. Firstly, the cDNA of rad51 gene was cloned and analyzed in P. sinensis. The cloned cDNA contained an open reading frame (ORF) of 1020 bp and encodeed a peptide of 339 amino acids. The multiple alignments and phylogenetic tree analysis of Rad51 showed that P. sinensis shares the high identity with Chelonia mydas (97.95%) and Mus musculus (95.89%). Secondly, reverse transcription-polymerase chain reaction (RT-PCR) and real-time quantitative polymerase chain reaction (RT-qPCR) analysis showed that rad51 mRNA was highly expressed in both ovary and testis, while being weak in the somatic tissues examined in this study. Furthermore, chemical in situ hybridization (CISH) was performed to examine the expression profile of rad51 mRNA in germ cells at different stages. In the testis, rad51 mRNA expression was found to be stronger in the germ cells at early stages, specifically in spermatogonia and spermatocytes, but it was undetectable in spermatids. In the ovary, rad51 mRNA exhibited a uniform distribution in the cytoplasm of oocytes at early stages. The signal intensity of rad51 mRNA was highest in primary oocytes and gradually declined during oogenesis as the oocytes developed. These results suggest that rad51 plays a vital role in the development of germ cells, particularly during the early stages of gametogenesis in P. sinensis. The dynamic expression pattern of rad51 mRNA provides insights into the mechanisms underlying germ cell development and differentiation into gametes in turtles, even in reptiles.
Collapse
Affiliation(s)
- Jianfei Xu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Yonglin Guo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Zhimin Tan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Wenzhuo Ban
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Jiaming Tian
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Kaili Chen
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Hongyan Xu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China.
| |
Collapse
|
11
|
Balagannavar G, Basavaraju K, Bajpai AK, Davuluri S, Kannan S, S Srini V, S Chandrashekar D, Chitturi N, K Acharya K. Transcriptomic analysis of the Non-Obstructive Azoospermia (NOA) to address gene expression regulation in human testis. Syst Biol Reprod Med 2023; 69:196-214. [PMID: 36883778 DOI: 10.1080/19396368.2023.2176268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
There is a need to understand the molecular basis of testes under Non-Obstructive Azoospermia (NOA), a state of failed spermatogenesis. There has been a lack of attention to the transcriptome at the level of alternatively spliced mRNAs (iso-mRNAs) and the mechanism of gene expression regulation. Hence, we aimed to establish a reliable iso-mRNA profile of NOA-testes, and explore molecular mechanisms - especially those related to gene expression regulation. We sequenced mRNAs from testicular samples of donors with complete spermatogenesis (control samples) and a failure of spermatogenesis (NOA samples). We identified differentially expressed genes and their iso-mRNAs via standard NGS data analyses. We then listed these iso-mRNAs hierarchically based on the extent of consistency of differential quantities across samples and groups, and validated the lists via RT-qPCRs (for 80 iso-mRNAs). In addition, we performed extensive bioinformatic analysis of the splicing features, domains, interactions, and functions of differentially expressed genes and iso-mRNAs. Many top-ranking down-regulated genes and iso-mRNAs, i.e., those down-regulated more consistently across the NOA samples, are associated with mitosis, replication, meiosis, cilium, RNA regulation, and post-translational modifications such as ubiquitination and phosphorylation. Most down-regulated iso-mRNAs correspond to full-length proteins that include all expected domains. The predominance of alternative promoters and termination sites in these iso-mRNAs indicate their gene expression regulation via promoters and UTRs. We compiled a new, comprehensive list of human transcription factors (TFs) and used it to identify TF-'TF gene' interactions with potential significance in down-regulating genes under the NOA condition. The results indicate that RAD51 suppression by HSF4 prevents SP1-activation, and SP1, in turn, could regulate multiple TF genes. This potential regulatory axis and other TF interactions identified in this study could explain the down-regulation of multiple genes in NOA-testes. Such molecular interactions may also have key regulatory roles during normal human spermatogenesis.
Collapse
Affiliation(s)
- Govindkumar Balagannavar
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India.,Research Scholar, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Kavyashree Basavaraju
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India.,BdataA: Biological data Analyzers' Association (virtual organization http://startbioinfo.com/BdataA/), India
| | - Akhilesh Kumar Bajpai
- BdataA: Biological data Analyzers' Association (virtual organization http://startbioinfo.com/BdataA/), India
| | - Sravanthi Davuluri
- BdataA: Biological data Analyzers' Association (virtual organization http://startbioinfo.com/BdataA/), India
| | - Shruthi Kannan
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | - Vasan S Srini
- Manipal Fertility, Manipal Hospital, Bengaluru, Karnataka, India
| | | | - Neelima Chitturi
- BdataA: Biological data Analyzers' Association (virtual organization http://startbioinfo.com/BdataA/), India
| | - Kshitish K Acharya
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India.,BdataA: Biological data Analyzers' Association (virtual organization http://startbioinfo.com/BdataA/), India
| |
Collapse
|
12
|
Wang X, Liu X, Qu M, Li H. Sertoli cell-only syndrome: advances, challenges, and perspectives in genetics and mechanisms. Cell Mol Life Sci 2023; 80:67. [PMID: 36814036 PMCID: PMC11072804 DOI: 10.1007/s00018-023-04723-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023]
Abstract
Male infertility can be caused by quantitative and/or qualitative abnormalities in spermatogenesis, which affects men's physical and mental health. Sertoli cell-only syndrome (SCOS) is the most severe histological phenotype of male infertility characterized by the depletion of germ cells with only Sertoli cells remaining in the seminiferous tubules. Most SCOS cases cannot be explained by the already known genetic causes including karyotype abnormalities and microdeletions of the Y chromosome. With the development of sequencing technology, studies on screening new genetic causes for SCOS are growing in recent years. Directly sequencing of target genes in sporadic cases and whole-exome sequencing applied in familial cases have identified several genes associated with SCOS. Analyses of the testicular transcriptome, proteome, and epigenetics in SCOS patients provide explanations regarding the molecular mechanisms of SCOS. In this review, we discuss the possible relationship between defective germline development and SCOS based on mouse models with SCO phenotype. We also summarize the advances and challenges in the exploration of genetic causes and mechanisms of SCOS. Knowing the genetic factors of SCOS offers a better understanding of SCO and human spermatogenesis, and it also has practical significance for improving diagnosis, making appropriate medical decisions, and genetic counseling. For therapeutic implications, SCOS research, along with the achievements in stem cell technologies and gene therapy, build the foundation to develop novel therapies for SCOS patients to produce functional spermatozoa, giving them hope to father children.
Collapse
Affiliation(s)
- Xiaotong Wang
- Institute of Reproductive Health/Center of Reproductive Medicine, Huazhong University of Science and Technology, Wuhan, 430000, China
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xinyu Liu
- Institute of Reproductive Health/Center of Reproductive Medicine, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Mengyuan Qu
- Institute of Reproductive Health/Center of Reproductive Medicine, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Honggang Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Huazhong University of Science and Technology, Wuhan, 430000, China.
- Wuhan Tongji Reproductive Medicine Hospital, Wuhan, 430000, China.
| |
Collapse
|
13
|
Shimakawa K, Ochiai K, Hirose S, Tanabe E, Michishita M, Sakaue M, Yoshikawa Y, Morimatsu M, Tajima T, Watanabe M, Tanaka Y. Canine Mammary Tumor Cell Lines Derived from Metastatic Foci Show Increased RAD51 Expression but Diminished Radioresistance via p21 Inhibition. Vet Sci 2022; 9:vetsci9120703. [PMID: 36548864 PMCID: PMC9784702 DOI: 10.3390/vetsci9120703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Due to the high incidence of mammary tumors in dogs, it is important to elucidate the pathogenesis of these tumors in veterinary medicine. Radiation therapy is often used to treat mammary tumors that target DNA lesions. RAD51 is a key molecule that repairs DNA damage via homologous recombination. We examined the relationship between RAD51 expression and radiosensitivity in mammary tumor cell lines. CHMp and CHMm from the same individual were selected based on the differences in RAD51 expression. The radiosensitivity of both cell lines was examined using MTT and scratch assays; CHMm, which has high RAD51 expression, showed higher sensitivity to radiation than CHMp. However, the nuclear focus of RAD51 during DNA repair was formed normally in CHMp, but not in most of CHMm. Since irradiation resulted in the suppression of cell cycle progression in CHMp, the expression of p21, a cell cycle regulatory factor, was detected in CHMp after 15 Gy irradiation but not in CHMm. These results indicate that functional expression is more important than the quantitative expression of RAD51 in canine mammary tumor cells in response to DNA damage.
Collapse
Affiliation(s)
- Kei Shimakawa
- Laboratory of Veterinary Hygiene, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Kazuhiko Ochiai
- Laboratory of Veterinary Hygiene, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
- Research Center for Animal Life Science, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
- Correspondence: ; Tel.: +81-422-31-4151
| | - Sachi Hirose
- Laboratory of Veterinary Hygiene, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Eri Tanabe
- Laboratory of Veterinary Hygiene, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Masaki Michishita
- Research Center for Animal Life Science, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
- Laboratory of Veterinary Pathology, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Motoharu Sakaue
- Laboratory of Anatomy II, Department of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - Yasunaga Yoshikawa
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Aomori 034-8628, Japan
| | - Masami Morimatsu
- Laboratory of Laboratory Animal Science and Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Tsuyoshi Tajima
- Department of Veterinary Pharmacology, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Masami Watanabe
- Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Yoshikazu Tanaka
- Laboratory of Veterinary Hygiene, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
- Research Center for Animal Life Science, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| |
Collapse
|