1
|
Guan X, Wu D, Zhu H, Zhu B, Wang Z, Xing H, Zhang X, Yan J, Guo Y, Lu Y. 3D pancreatic ductal adenocarcinoma desmoplastic model: Glycolysis facilitating stemness via ITGAV-PI3K-AKT-YAP1. BIOMATERIALS ADVANCES 2025; 170:214215. [PMID: 39889369 DOI: 10.1016/j.bioadv.2025.214215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/14/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
The distinctive desmoplastic tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) is crucial in determining the stemness of tumor cells. And the conventional two-dimensional (2D) culture does not adequately mimic the TME. Therefore, a three-dimensional (3D) PDAC desmoplastic model was constructed using GelMA and HAMA, which provides benefits in terms of simulating both the main components (COL and HA) and the crosslinking of the extracellular matrix. We found that the 3D PDAC desmoplastic model upregulated the expression of the markers for stemness (NANOG and OCT4) and glycolysis (HK2 and GLUT2), and elevated the level of glycolysis, including increased glucose consumption and lactic acid production. Additionally, YAP1 played a crucial role in promoting glycolysis, which boosted stemness. Furthermore, RNA sequencing (RNA-seq) was employed to explore the underlying mechanisms associated with stemness within the 3D desmoplastic model. Subsequent KEGG pathway analysis indicated the activation of the PI3K-AKT signaling pathway, providing insights into the molecular processes at play. Using bioinformatics, qRT-PCR and western blot, we proposed that ITGAV-PI3K-AKT-YAP1 axis may account for the glycolysis mediated the stemness. Collectively, the 3D desmoplastic model may serve as a new platform for understanding the underlying mechanism by which the TME induces stemness.
Collapse
Affiliation(s)
- Xiaoqi Guan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China
| | - Di Wu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China
| | - Hongyu Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China
| | - Biwen Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China
| | - Zhen Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China
| | - Haowei Xing
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China
| | - Xue Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China; Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, China
| | - Jiashuai Yan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China.
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China.
| |
Collapse
|
2
|
Zhang Q, Han L, Luo X, Bao Y, Wang S, Li T, Huo J, Meng X. Enhancing inhibitory effect in SMMC-7721 hepatoma cells through combined treatment of gallic acid and hUC-MSCs-Exos. Int Immunopharmacol 2025; 144:113704. [PMID: 39608175 DOI: 10.1016/j.intimp.2024.113704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/23/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Clinically, hepatoma patients are more frequently encountered in the intermediate and advanced stages. Consequently, the majority of patients miss out on the chance to undergo liver transplantation or radical surgery. Radiotherapy and chemotherapy often fall short of delivering satisfactory outcomes. The incidence and mortality rates for liver cancer approach nearly 100%. In recent years, both exosomes (Exos) and natural chemical compounds have demonstrated robust anti-cancer properties; however, the synergistic effect of their combination remains unexplored. METHODS Exos were extracted from human umbilical cord mesenchymal stem cells (hUC-MSCs). The impact of gallic acid (GA), hUC-MSCs-Exos, and their combined administration on the proliferation inhibition rate and apoptosis of SMMC-7721 hepatoma cells was assessed to ascertain the efficacy differences before and after the combined treatment. A combination of cells metabolomics and network pharmacology techniques was employed to investigate the underlying mechanisms of action. The pivotal targets associated with glycolysis, inflammation, and oxidative stress pathways were confirmed through ELISA assays. RESULTS The findings elucidate that GA profoundly impedes the proliferation of SMMC-7721 hepatoma cells and instigates apoptotic processes therein. While the impact of hUC-MSCs-Exos alone was inconspicuous, a notable augmentation in effect ensued upon their combined application. Concomitantly, a marked reduction was observed in the expressionlevels of key enzymes including HK, PFK, PK, LDH, TNF-α, IL-1β, CAT, SOD and GSH-Px in the malignant hepatocytes, while IL-6 and MDA exhibited heightened expression. Pathway enrichment analysis underscored selenocompound metabolism and cysteine and methionine metabolism as pivotal pathways. CONCLUSION The potentiated efficacy of GA conjunction with hUC-MSCs-Exos may be attributed to their synergistic modulation of anti-inflammatory, antioxidant, and glycolytic functions, thereby influencing selenocompound metabolism and cysteine and methionine metabolism. This study reveals the efficacy and mechanism of Exos and GA combined therapy for hepatoma, providing new methods and ideas for the clinical treatment of hepatoma.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning Dalian China
| | - Liying Han
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning Dalian China
| | - Xi Luo
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning Dalian China
| | - Yongrui Bao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning Dalian China; Professional Innovation Technology Center for Multidimensional Analysis of Traditional Chinese Medicine, Liaoning Dalian China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Liaoning Dalian China
| | - Shuai Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning Dalian China; Professional Innovation Technology Center for Multidimensional Analysis of Traditional Chinese Medicine, Liaoning Dalian China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Liaoning Dalian China
| | - Tianjiao Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning Dalian China; Professional Innovation Technology Center for Multidimensional Analysis of Traditional Chinese Medicine, Liaoning Dalian China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Liaoning Dalian China
| | - Jinnan Huo
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning Dalian China
| | - Xiansheng Meng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning Dalian China; Professional Innovation Technology Center for Multidimensional Analysis of Traditional Chinese Medicine, Liaoning Dalian China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Liaoning Dalian China.
| |
Collapse
|
3
|
Kanabar D, Kane EI, Chavan T, Laflamme TM, Suarez E, Goyal M, Gupta V, Spratt DE, Muth A. Synthesis and evaluation of 2,5-substituted pyrimidines as small-molecule gankyrin binders. Future Med Chem 2024; 16:239-251. [PMID: 38205637 PMCID: PMC10853842 DOI: 10.4155/fmc-2023-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
Background: Gankyrin is an ankyrin-repeat protein that promotes cell proliferation, tumor development and cancer progression when overexpressed. Aim: To design and synthesize a novel series of gankyrin-binding small molecules predicated on a 2,5-pyrimidine scaffold. Materials & methods: The synthesized compounds were evaluated for their antiproliferative activity, ability to bind gankyrin and effects on cell cycle progression and the proteasomal degradation pathway. Results: Compounds 188 and 193 demonstrated the most potent antiproliferative activity against MCF7 and A549 cells, respectively. Both compounds also demonstrated the ability to effectively bind gankyrin, disrupt proteasomal degradation and inhibit cell cycle progression. Conclusion: The 2,5-pyrimidine scaffold exhibits a novel and promising strategy for binding gankyrin and inhibiting cancer cell proliferation.
Collapse
Affiliation(s)
- Dipti Kanabar
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Emma I Kane
- Gustaf H. Carlson School of Chemistry & Biochemistry, Clark University, Worcester, MA 01610, USA
| | - Tejashri Chavan
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Taylor M Laflamme
- Gustaf H. Carlson School of Chemistry & Biochemistry, Clark University, Worcester, MA 01610, USA
| | - Ethan Suarez
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Mimansa Goyal
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Donald E Spratt
- Gustaf H. Carlson School of Chemistry & Biochemistry, Clark University, Worcester, MA 01610, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Queens, NY 11439, USA
| |
Collapse
|
4
|
Shuvalov O, Kirdeeva Y, Fefilova E, Netsvetay S, Zorin M, Vlasova Y, Fedorova O, Daks A, Parfenyev S, Barlev N. 20-Hydroxyecdysone Confers Antioxidant and Antineoplastic Properties in Human Non-Small Cell Lung Cancer Cells. Metabolites 2023; 13:metabo13050656. [PMID: 37233697 DOI: 10.3390/metabo13050656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
20-Hydroxyecdysone (20E) is an arthropod hormone which is synthesized by some plants as part of their defense mechanism. In humans, 20E has no hormonal activity but possesses a number of beneficial pharmacological properties including anabolic, adaptogenic, hypoglycemic, and antioxidant properties, as well as cardio-, hepato-, and neuroprotective features. Recent studies have shown that 20E may also possess antineoplastic activity. In the present study, we reveal the anticancer properties of 20E in Non-Small Cell Lung Cancer (NSCLC) cell lines. 20E displayed significant antioxidant capacities and induced the expression of antioxidative stress response genes. The RNA-seq analysis of 20E-treated lung cancer cells revealed the attenuation of genes involved in different metabolic processes. Indeed, 20E suppressed several enzymes of glycolysis and one-carbon metabolism, as well as their key transcriptional regulators-c-Myc and ATF4, respectively. Accordingly, using the SeaHorse energy profiling approach, we observed the inhibition of glycolysis and respiration mediated by 20E treatment. Furthermore, 20E sensibilized lung cancer cells to metabolic inhibitors and markedly suppressed the expression of Cancer Stem Cells (CSCs) markers. Thus, in addition to the known beneficial pharmacological activities of 20E, our data uncovered novel antineoplastic properties of 20E in NSCLC cells.
Collapse
Affiliation(s)
- Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Yulia Kirdeeva
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Elizaveta Fefilova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Sofia Netsvetay
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Mark Zorin
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Yulia Vlasova
- Almazov National Medical Research Center Russia, 197341 St. Petersburg, Russia
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Sergey Parfenyev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Nickolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
- School of Medicine, Nazarbayev University, 001000 Astana, Kazakhstan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
5
|
Saleem HM, Ramaiah P, Gupta J, Jalil AT, Kadhim NA, Alsaikhan F, Ramírez-Coronel AA, Tayyib NA, Guo Q. Nanotechnology-empowered lung cancer therapy: From EMT role in cancer metastasis to application of nanoengineered structures for modulating growth and metastasis. ENVIRONMENTAL RESEARCH 2023:115942. [PMID: 37080268 DOI: 10.1016/j.envres.2023.115942] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Lung cancer is one of the leading causes of death in both males and females, and it is the first causes of cancer-related deaths. Chemotherapy, surgery and radiotherapy are conventional treatment of lung cancer and recently, immunotherapy has been also appeared as another therapeutic strategy for lung tumor. However, since previous treatments have not been successful in cancer therapy and improving prognosis and survival rate of lung tumor patients, new studies have focused on gene therapy and targeting underlying molecular pathways involved in lung cancer progression. Nanoparticles have been emerged in treatment of lung cancer that can mediate targeted delivery of drugs and genes. Nanoparticles protect drugs and genes against unexpected interactions in blood circulation and improve their circulation time. Nanoparticles can induce phototherapy in lung cancer ablation and mediating cell death. Nanoparticles can induce photothermal and photodynamic therapy in lung cancer. The nanostructures can impair metastasis of lung cancer and suppress EMT in improving drug sensitivity. Metastasis is one of the drawbacks observed in lung cancer that promotes migration of tumor cells and allows them to establish new colony in secondary site. EMT can occur in lung cancer and promotes tumor invasion. EMT is not certain to lung cancer and it can be observed in other human cancers, but since lung cancer has highest incidence rate, understanding EMT function in lung cancer is beneficial in improving prognosis of patients. EMT induction in lung cancer promotes tumor invasion and it can also lead to drug resistance and radio-resistance. Moreover, non-coding RNAs and pharmacological compounds can regulate EMT in lung cancer and EMT-TFs such as Twist and Slug are important modulators of lung cancer invasion that are discussed in current review.
Collapse
Affiliation(s)
- Hiba Muwafaq Saleem
- Department of Medical Laboratory Techniques, Al-Maarif University College, AL-Anbar, Iraq.
| | | | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, UP, India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Qingdong Guo
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
6
|
Li W, Shu X, Zhang X, Zhang Z, Sun S, Li N, Long M. Potential Roles of YAP/TAZ Mechanotransduction in Spaceflight-Induced Liver Dysfunction. Int J Mol Sci 2023; 24:ijms24032197. [PMID: 36768527 PMCID: PMC9917057 DOI: 10.3390/ijms24032197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Microgravity exposure during spaceflight causes the disordered regulation of liver function, presenting a specialized mechano-biological coupling process. While YAP/TAZ serves as a typical mechanosensitive pathway involved in hepatocyte metabolism, it remains unclear whether and how it is correlated with microgravity-induced liver dysfunction. Here, we discussed liver function alterations induced by spaceflight or simulated effects of microgravity on Earth. The roles of YAP/TAZ serving as a potential bridge in connecting liver metabolism with microgravity were specifically summarized. Existing evidence indicated that YAP/TAZ target gene expressions were affected by mechanotransductive pathways and phase separation, reasonably speculating that microgravity might regulate YAP/TAZ activation by disrupting these pathways via cytoskeletal remodeling or nuclear deformation, or disturbing condensates formation via diffusion limit, and then breaking liver homeostasis.
Collapse
Affiliation(s)
- Wang Li
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Shu
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Zhang
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziliang Zhang
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shujin Sun
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Li
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (N.L.); (M.L.)
| | - Mian Long
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (N.L.); (M.L.)
| |
Collapse
|