1
|
Carranza-Aranda AS, Jave-Suárez LF, Flores-Hernández FY, Huizar-López MDR, Herrera-Rodríguez SE, Santerre A. In silico and in vitro study of FLT3 inhibitors and their application in acute myeloid leukemia. Mol Med Rep 2024; 30:229. [PMID: 39392050 PMCID: PMC11475230 DOI: 10.3892/mmr.2024.13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most common hematological cancer in the adult population worldwide. Approximately 35% of patients with AML present internal tandem duplication (ITD) mutations in the FMS‑like tyrosine kinase 3 (FLT3) receptor associated with poor prognosis, and thus, this receptor is a relevant target for potential therapeutics. Tyrosine kinase inhibitors (TKIs) are used to treat AML; however, their molecular interactions and effects on leukemic cells are poorly understood. The present study aimed to gain insights into the molecular interactions and affinity forces of four TKI drugs (sorafenib, midostaurin, gilteritinib and quizartinib) with the wild‑type (WT)‑FLT3 and ITD‑mutated (ITD‑FLT3) structural models of FLT3, in its inactive aspartic acid‑phenylalanine‑glycine motif (DFG‑out) and active aspartic acid‑phenylalanine‑glycine motif (DFG‑in) conformations. Furthermore, the present study evaluated the effects of the second‑generation TKIs gilteritinib and quizartinib on cancer cell viability, apoptosis and proliferation in the MV4‑11 (ITD‑FLT3) and HL60 (WT‑FLT3) AML cell lines. Peripheral blood mononuclear cells (PBMCs) from a healthy volunteer were included as an FLT3‑negative group. Molecular docking analysis indicated higher affinities of second‑generation TKIs for WT‑FLT3/DFG‑out and WT‑FLT3/DFG‑in compared with those of the first‑generation TKIs. However, the ITD mutation changed the affinity of all TKIs. The in vitro data supported the in silico predictions: MV4‑11 cells presented high selective sensibility to gilteritinib and quizartinib compared with the HL60 cells, whereas the drugs had no effect on PBMCs. Thus, the current study presented novel information about molecular interactions between the FLT3 receptors (WT or ITD‑mutated) and some of their inhibitors. It also paves the way for the search for novel inhibitory molecules with potential use against AML.
Collapse
Affiliation(s)
- Ahtziri S. Carranza-Aranda
- Biomedicine and Ecology Molecular Markers Laboratory, Department of Cellular and Molecular Biology, Biological and Agricultural Sciences Campus, University of Guadalajara, Zapopan, Jalisco 44600, Mexico
| | - Luis Felipe Jave-Suárez
- Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| | - Flor Y. Flores-Hernández
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of The State of Jalisco, Guadalajara, Jalisco 44270, Mexico
| | - María Del Rosario Huizar-López
- Biomedicine and Ecology Molecular Markers Laboratory, Department of Cellular and Molecular Biology, Biological and Agricultural Sciences Campus, University of Guadalajara, Zapopan, Jalisco 44600, Mexico
| | - Sara E. Herrera-Rodríguez
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of The State of Jalisco, Merida, Yucatan 97302, Mexico
| | - Anne Santerre
- Biomedicine and Ecology Molecular Markers Laboratory, Department of Cellular and Molecular Biology, Biological and Agricultural Sciences Campus, University of Guadalajara, Zapopan, Jalisco 44600, Mexico
| |
Collapse
|
2
|
Ruglioni M, Crucitta S, Luculli GI, Tancredi G, Del Giudice ML, Mechelli S, Galimberti S, Danesi R, Del Re M. Understanding mechanisms of resistance to FLT3 inhibitors in adult FLT3-mutated acute myeloid leukemia to guide treatment strategy. Crit Rev Oncol Hematol 2024; 201:104424. [PMID: 38917943 DOI: 10.1016/j.critrevonc.2024.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
The presence of FLT3 mutations, including the most common FLT3-ITD (internal tandem duplications) and FLT3-TKD (tyrosine kinase domain), is associated with an unfavorable prognosis in patients affected by acute myeloid leukemia (AML). In this setting, in recent years, new FLT3 inhibitors have demonstrated efficacy in improving survival and treatment response. Nevertheless, the development of primary and secondary mechanisms of resistance poses a significant obstacle to their efficacy. Understanding these mechanisms is crucial for developing novel therapeutic approaches to overcome resistance and improve the outcomes of patients. In this context, the use of novel FLT3 inhibitors and the combination of different targeted therapies have been studied. This review provides an update on the molecular alterations involved in the resistance to FLT3 inhibitors, and describes how the molecular monitoring may be used to guide treatment strategy in FLT3-mutated AML.
Collapse
Affiliation(s)
- Martina Ruglioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Giovanna Irene Luculli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Gaspare Tancredi
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Maria Livia Del Giudice
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Sandra Mechelli
- Unit of Internal Medicine 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Sara Galimberti
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Romano Danesi
- Department of Oncology and Hemato-Oncology, University of Milan, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
3
|
Qiu Y, Bai L, Zhao H, Mei X. Homoharringtonine enhances cytarabine-induced apoptosis in acute myeloid leukaemia by regulating the p38 MAPK/H2AX/Mcl-1 axis. BMC Cancer 2024; 24:520. [PMID: 38658865 PMCID: PMC11044605 DOI: 10.1186/s12885-024-12286-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
Acute myeloid leukaemia (AML) is a fatal haematopoietic malignancy and is treated with the conventional combination of cytarabine (Ara-C) and daunorubicin (Dau). The survival rate of AML patients is lower due to the cardiotoxicity of daunorubicin. Clinically, homoharringtonine (HHT) plus Ara-C has been reported to be equally effective as Dau plus Ara-C in some types of AML patients with less toxic effects. We utilized the clinical use of homoharringtonine in combination with Ara-C to test its combination mechanism. We found that the insensitivity of AML cells to cytarabine-induced apoptosis is associated with increased Mcl-1 stability and p38 inactivation. HHT downregulates Mcl-1, phosphorylates H2AX and induces apoptosis by activating p38 MAPK. Inactivation of p38 through inhibitors and siRNA blocks apoptosis, H2AX phosphorylation and Mcl-1 reduction. HHT enhances Ara-C activation of the p38 MAPK signalling pathway, overcoming Ara-C tolerance to cell apoptosis by regulating the p38/H2AX/Mcl-1 axis. The optimal ratio of HHT to Ara-C for synergistic lethality in AML cells is 1:4 (M/M). HHT synergistically induces apoptosis in combination with Ara-C in vitro and prolongs the survival of xenografts. We provide a new mechanism for AML treatment by regulating the p38 MAPK/H2AX/Mcl-1 axis to improve cytarabine therapy.
Collapse
Affiliation(s)
- Yang Qiu
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
- Liaoning Provincial Key Laboratory of Marine Bioactive Substances, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
- Technological Innovation Center of Liaoning Pharmaceutical Action and Quality Evaluation, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| | - Lu Bai
- Affiliated Third Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Haosen Zhao
- Affiliated Third Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xifan Mei
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| |
Collapse
|
4
|
Lee JK, Chatterjee A, Scarpa M, Bailey CM, Niyongere S, Singh P, Mustafa Ali MK, Kapoor S, Wang Y, Silvestri G, Baer MR. Pim Kinase Inhibitors Increase Gilteritinib Cytotoxicity in FLT3-ITD Acute Myeloid Leukemia Through GSK-3β Activation and c-Myc and Mcl-1 Proteasomal Degradation. CANCER RESEARCH COMMUNICATIONS 2024; 4:431-445. [PMID: 38284896 PMCID: PMC10870818 DOI: 10.1158/2767-9764.crc-23-0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/12/2023] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
Acute myeloid leukemia (AML) with fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) has poor outcomes. FLT3-ITD drives constitutive and aberrant FLT3 signaling, activating STAT5 and upregulating the downstream oncogenic serine/threonine kinase Pim-1. FLT3 inhibitors are in clinical use, but with limited and transient efficacy. We previously showed that concurrent treatment with Pim and FLT3 inhibitors increases apoptosis induction in FLT3-ITD-expressing cells through posttranslational downregulation of Mcl-1. Here we further elucidate the mechanism of action of this dual targeting strategy. Cytotoxicity, apoptosis and protein expression and turnover were measured in FLT3-ITD-expressing cell lines and AML patient blasts treated with the FLT3 inhibitor gilteritinib and/or the Pim inhibitors AZD1208 or TP-3654. Pim inhibitor and gilteritinib cotreatment increased apoptosis induction, produced synergistic cytotoxicity, downregulated c-Myc protein expression, earlier than Mcl-1, increased turnover of both proteins, which was rescued by proteasome inhibition, and increased efficacy and prolonged survival in an in vivo model. Gilteritinib and Pim inhibitor cotreatment of Ba/F3-ITD cells infected with T58A c-Myc or S159A Mcl-1 plasmids, preventing phosphorylation at these sites, did not downregulate these proteins, increase their turnover or increase apoptosis induction. Moreover, concurrent treatment with gilteritinib and Pim inhibitors dephosphorylated (activated) the serine/threonine kinase glycogen synthase kinase-3β (GSK-3β), and GSK-3β inhibition prevented c-Myc and Mcl-1 downregulation and decreased apoptosis induction. The data are consistent with c-Myc T58 and Mcl-1 S159 phosphorylation by activated GSK-3β as the mechanism of action of gilteritinib and Pim inhibitor combination treatment, further supporting GSK-3β activation as a therapeutic strategy in FLT3-ITD AML. SIGNIFICANCE FLT3-ITD is present in 25% of in AML, with continued poor outcomes. Combining Pim kinase inhibitors with the FDA-approved FLT3 inhibitor gilteritinib increases cytotoxicity in vitro and in vivo through activation of GSK-3β, which phosphorylates and posttranslationally downregulates c-Myc and Mcl-1. The data support efficacy of GSK-3β activation in FLT3-ITD AML, and also support development of a clinical trial combining the Pim inhibitor TP-3654 with gilteritinib.
Collapse
Affiliation(s)
- Jonelle K. Lee
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Aditi Chatterjee
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mario Scarpa
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Christopher M. Bailey
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sandrine Niyongere
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Prerna Singh
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Moaath K. Mustafa Ali
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shivani Kapoor
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Yin Wang
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Giovannino Silvestri
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Maria R. Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
5
|
Xu X, Ma W, Qiu G, Xuan L, He C, Zhang T, Wang J, Liu Q. Venetoclax Overcomes Sorafenib Resistance in Acute Myeloid Leukemia by Targeting BCL2. BIOLOGY 2023; 12:1337. [PMID: 37887047 PMCID: PMC10603903 DOI: 10.3390/biology12101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
Sorafenib, a kinase inhibitor, has shown promising therapeutic efficacy in a subset of patients with acute myeloid leukemia (AML). However, despite its clinical effectiveness, sorafenib resistance is frequently observed in clinical settings, and the mechanisms underlying this resistance as well as effective strategies to overcome it remain unclear. We examined both single-cell and bulk transcription data in sorafenib-resistant and control AML patients and integrated a sorafenib resistance gene signature to predict the sensitivity of AML cells and the clinical outcomes of AML patients undergoing sorafenib therapy. In addition, our drug sensitivity analysis of scRNA-seq data using deconvolution methods showed that venetoclax was effective in targeting sorafenib-resistant AML cells. Mechanistically, sorafenib was found to activate the JAK-STAT3 pathway and upregulate BCL2 expression in sorafenib-resistant AML cells. This upregulation of BCL2 expression rendered the cells vulnerable to the BCL2 inhibitor venetoclax. In conclusion, we developed a platform to predict sorafenib resistance and clinical outcomes in AML patients after therapy. Our findings suggest that the combination of sorafenib and venetoclax could be an effective therapeutic strategy for AML treatment.
Collapse
Affiliation(s)
- Xi Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510091, China (L.X.)
| | - Weiwei Ma
- Department of Hematology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China;
| | - Guo Qiu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510091, China (L.X.)
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510091, China (L.X.)
| | - Chong He
- Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Tian Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510091, China (L.X.)
| | - Jian Wang
- Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510091, China (L.X.)
| |
Collapse
|
6
|
Choi YJ, Park J, Choi H, Oh SJ, Park JH, Park M, Kim JW, Kim YG, Kim YC, Kim MJ, Kang KW. PLM-101 is a novel and potent FLT3/RET inhibitor with less adverse effects in the treatment of acute myeloid leukemia. Biomed Pharmacother 2023; 165:115066. [PMID: 37392657 DOI: 10.1016/j.biopha.2023.115066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/12/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Acute myeloid leukemia (AML) is a prevalent form of leukemia in adults. As its survival rate is low, there is an urgent need for new therapeutic options. In AML, FMS-like tyrosine kinase 3 (FLT3) mutations are common and have negative outcomes. However, current FLT3-targeting agents, Midostaurin and Gilteritinib, face two significant issues, specifically the emergence of acquired resistance and drug-related adverse events leading to treatment failure. Rearranged during transfection (RET), meanwhile, is a proto-oncogene linked to various types of cancer, but its role in AML has been limited. A previous study showed that activation of RET kinase enhances FLT3 protein stability, leading to the promotion of AML cell proliferation. However, no drugs are currently available that target both FLT3 and RET. This study introduces PLM-101, a new therapeutic option derived from the traditional Chinese medicine indigo naturalis with potent in vitro and in vivo anti-leukemic activities. PLM-101 potently inhibits FLT3 kinase and induces its autophagic degradation via RET inhibition, providing a superior mechanism to that of FLT3 single-targeting agents. Single- and repeated-dose toxicity tests conducted in the present study showed no significant drug-related adverse effects. This study is the first to present a new FLT3/RET dual-targeting inhibitor, PLM-101, that shows potent anti-leukemic activity and fewer adverse effects. PLM-101, therefore, should be considered for use as a potential therapeutic agent for AML.
Collapse
Affiliation(s)
- Yong June Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaewoo Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyoyi Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Su-Jin Oh
- R&D Center, PeLeMed, Co. Ltd., Seoul 06100, Republic of Korea
| | - Jin-Hee Park
- R&D Center, PeLeMed, Co. Ltd., Seoul 06100, Republic of Korea
| | - Miso Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Won Kim
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Yoon-Gyoon Kim
- College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Yong-Chul Kim
- R&D Center, PeLeMed, Co. Ltd., Seoul 06100, Republic of Korea; School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Myung Jin Kim
- R&D Center, PeLeMed, Co. Ltd., Seoul 06100, Republic of Korea.
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|