1
|
Yu Q, Zhang Q, Wu Z, Yang Y. Inhalable Metal-Organic Frameworks: A Promising Delivery Platform for Pulmonary Diseases Treatment. ACS NANO 2025; 19:3037-3053. [PMID: 39808505 DOI: 10.1021/acsnano.4c16873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Inhalation delivery, offering a direct pathway for administering drugs to the lungs in the form of dry powders or aerosols, stands out as an optimal approach for the localized treatment of pulmonary diseases. However, the intricate anatomical architecture of the lung often poses challenges in maintaining effective drug concentrations within the lungs over extended periods. This highlights the pressing need to develop rational inhalable drug delivery systems that can improve treatment outcomes for respiratory diseases. Metal-organic frameworks (MOFs) assembled from inorganic metal ions and organic ligands, characterized by customizable porous architecture and chemical composition, modifiable porosity, vast surface area, straightforward surface modification, and adjustable biocompatibility, have garnered extensive attention in the biomedical sphere. The introduction of MOFs into inhalation therapy represents a promising avenue to navigate past the hurdles associated with traditional inhalation methods. Therefore, this review summarizes the characteristics of inhalation delivery together with the latest advances, challenges, and opportunities in utilizing inhalable MOFs for treating lung diseases and discusses prospects in this field alongside the potential pathways for translating this strategy into clinic.
Collapse
Affiliation(s)
- Qifan Yu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Qiang Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Zhiqiang Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| |
Collapse
|
2
|
Esnault S, Dill-McFarland KA, Altman MC, Rosenkranz MA, Jarjour NN, Busse WW. Identification of bronchial epithelial genes associated with type 2 eosinophilic inflammation in asthma. J Allergy Clin Immunol 2025:S0091-6749(25)00007-7. [PMID: 39793714 DOI: 10.1016/j.jaci.2024.12.1089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Airway inflammation plays a critical role in asthma pathogenesis and pathophysiology, but the molecular pathways contributing to airway inflammation are not fully known, particularly type 2 (T2) inflammation characterized by both eosinophilia and higher fractional exhaled nitric oxide (Feno) levels. OBJECTIVE We sought to identify genes whose level of expression in epithelial brushing samples were associated with both bronchoalveolar lavage (BAL) eosinophilia and generation of Feno. METHODS We performed segmental allergen bronchoprovocation (SBP-Ag) in participants with asthma, then RNA sequencing analyses of BAL cells and brushing samples before and 48 hours after SBP-Ag to identify regulation of eosinophil recruitment and Feno changes. RESULTS Allergen bronchoprovocation increased Feno levels, which correlated with eosinophilia. Thirteen genes were identified in brushing samples, whose expression changed in response to SBP-Ag and correlated with both airway eosinophilia and Feno levels after SBP-Ag. Among these 13 genes, epithelial cell product CDH26/cadherin-26 contributed to the amplification of T2 inflammation, as reflected by eosinophilia and Feno, and causal mediation analyses with pro-T2 and proeosinophilic cytokine mediators in BAL fluids. Among the genes associated with reduced eosinophilia and Feno, HEY2 is known to enhance cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition, as well as to reduce apoptosis. CONCLUSION This unbiased RNA sequencing analysis in participants with allergic asthma revealed several epithelial cell genes, particularly CDH26, that may be critical for the development or augmentation of T2 inflammation in asthma.
Collapse
Affiliation(s)
- Stephane Esnault
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, Wis; University of Lille, INSERM, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, Lille, France
| | | | - Matthew C Altman
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Wash; Systems Immunology Program, Benaroya Research Institute, Seattle, Wash
| | - Melissa A Rosenkranz
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, Wis; Department of Psychiatry, University of Wisconsin-Madison, Madison, Wis
| | - Nizar N Jarjour
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, Wis
| | - William W Busse
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, Wis.
| |
Collapse
|
3
|
Zhang L, Leonard N, Passaro R, Luan MS, Van Tuyen P, Han LTN, Cam NH, Vogelnest L, Lynch M, Fine AE, Nga NTT, Van Long N, Rawson BM, Behie A, Van Nguyen T, Le MD, Nadler T, Walter L, Marques-Bonet T, Hofreiter M, Li M, Liu Z, Roos C. Genomic adaptation to small population size and saltwater consumption in the critically endangered Cat Ba langur. Nat Commun 2024; 15:8531. [PMID: 39358348 PMCID: PMC11447269 DOI: 10.1038/s41467-024-52811-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Many mammal species have declining populations, but the consequences of small population size on the genomic makeup of species remain largely unknown. We investigated the evolutionary history, genetic load and adaptive potential of the Cat Ba langur (Trachypithecus poliocephalus), a primate species endemic to Vietnam's famous Ha Long Bay and with less than 100 living individuals one of the most threatened primates in the world. Using high-coverage whole genome data of four wild individuals, we revealed the Cat Ba langur as sister species to its conspecifics of the northern limestone langur clade and found no evidence for extensive secondary gene flow after their initial separation. Compared to other primates and mammals, the Cat Ba langur showed low levels of genetic diversity, long runs of homozygosity, high levels of inbreeding and an excess of deleterious mutations in homozygous state. On the other hand, genetic diversity has been maintained in protein-coding genes and on the gene-rich human chromosome 19 ortholog, suggesting that the Cat Ba langur retained most of its adaptive potential. The Cat Ba langur also exhibits several unique non-synonymous variants that are related to calcium and sodium metabolism, which may have improved adaptation to high calcium intake and saltwater consumption.
Collapse
Affiliation(s)
- Liye Zhang
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
- International Max Planck Research School for Genome Science (IMPRS-GS), University of Göttingen, Göttingen, Germany.
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Neahga Leonard
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Rick Passaro
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Mai Sy Luan
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Pham Van Tuyen
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Le Thi Ngoc Han
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Nguyen Huy Cam
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Larry Vogelnest
- Taronga Conservation Society Australia, Mosman, NSW, Australia
| | - Michael Lynch
- Melbourne Zoo, Zoos Victoria, Parkville, VIC, Australia
| | - Amanda E Fine
- Wildlife Conservation Society (WCS), Health Program, New York, NY, USA
| | | | - Nguyen Van Long
- Wildlife Conservation Society (WCS), Vietnam Country Program, Hanoi, Vietnam
| | - Benjamin M Rawson
- World Wildlife Fund for Nature (WWF) International, Gland, Switzerland
| | - Alison Behie
- School of Archaeology and Anthropology, The Australian National University, Canberra, ACT, Australia
| | - Truong Van Nguyen
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, Department of Science, University of Potsdam, Potsdam, Germany
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, Vietnam
| | - Minh D Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, Vietnam
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, Vietnam
| | - Tilo Nadler
- Three Monkeys Wildlife Conservancy, Nho Quan District, Ninh Binh Province, Ninh Binh, Vietnam
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Spain
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, Department of Science, University of Potsdam, Potsdam, Germany.
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Zhijin Liu
- College of Life Sciences, Capital Normal University, Beijing, China.
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
- Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
| |
Collapse
|
4
|
Gayvert K, Desrosiers M, Laidlaw TM, Mannent LP, Patel K, Horowitz J, Amin N, Jagerschmidt A, Hamilton JD, Lim WK, Harel S. Nasal brushing molecular endotyping distinguishes patients with chronic rhinosinusitis with nasal polyps with better response to dupilumab. J Allergy Clin Immunol 2024; 154:619-630. [PMID: 38880251 DOI: 10.1016/j.jaci.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND There is evidence of pathophysiologic diversity in chronic rhinosinusitis with nasal polyps (CRSwNP), but data characterizing the molecular endotypes of CRSwNP and their association with treatment are lacking. OBJECTIVE This study aimed to identify gene signatures associated with CRSwNP endotypes, clinical features, and dupilumab treatment response. METHODS Nasal brushing samples were collected from 89 patients randomized to dupilumab 300 mg every 2 weeks or placebo in the SINUS-52 trial (NCT02898454). Microarrays were used to identify transcriptional clusters and assess the relationship between gene expression and baseline clinical features and clinical response to dupilumab. Endotype signatures were determined using differential expression analysis. RESULTS Two distinct transcriptional clusters (C1 and C2) were identified, both with elevated type 2 biomarkers. At baseline, C2 patients had higher mean Nasal Polyp Score and higher type 2 biomarker levels than C1 patients. At week 24, significant improvements in clinical outcomes (dupilumab vs placebo) were observed in both clusters, although the magnitude of improvements was significantly greater in C2 than in C1, and more C2 patients demonstrated clinically meaningful responses. Gene set enrichment analysis supported the existence of 2 molecular endotypes: C2 was enriched in genes associated with type 2 inflammation (including periostin, cadherin-26, and type 2 cysteine protease inhibitors), while C1 was enriched in genes associated with T cell activation and IL-12 production. CONCLUSIONS Two distinct gene signatures associated with CRSwNP clinical features were identified; the endotype signatures were associated with clinical outcome measures and magnitude of dupilumab response.
Collapse
Affiliation(s)
| | - Martin Desrosiers
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Tanya M Laidlaw
- Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | | | | | | | - Nikhil Amin
- Regeneron Pharmaceuticals Inc, Tarrytown, NY
| | | | | | | | - Sivan Harel
- Regeneron Pharmaceuticals Inc, Tarrytown, NY
| |
Collapse
|
5
|
Gueguen E, Morsy Y, Mamie C, Schoepfer A, Saner C, Biedermann L, Straumann A, Kreienbühl A, Scharl M, Wawrzyniak M. Novel transcriptomic panel identifies histologically active eosinophilic oesophagitis. Gut 2024; 73:1076-1086. [PMID: 38670631 PMCID: PMC11187384 DOI: 10.1136/gutjnl-2023-331743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND AND AIMS Eosinophilic oesophagitis (EoE) is characterised by symptoms of esophageal dysfunction and oesinophil tissue infiltration. The EoE Diagnostic Panel (EDP) can distinguish between active and non-active EoE using a set of 77 genes. Recently, the existence of distinct EoE variants featuring symptoms similar to EoE, such as oesophageal dysfunction but lacking eosinophil infiltration, had been determined. METHODS We used oesophageal biopsies from patients with histologically active (n=10) and non-active EoE (n=9) as well as from healthy oesophageal controls (n=5) participating in the Swiss Eosinophilic Esophagitis Cohort Study (SEECS) and analysed the gene expression profile in these biopsies by total RNA-sequencing (RNA-seq). Moreover, we employed the publicly accessible RNA-seq dataset (series GSE148381) as reported by Greuter et al, encompassing a comprehensive genomic profile of patients presenting with EoE variants. RESULTS A novel, diagnostic gene expression panel that can effectively distinguish patients with histologically active conventional EoE from patients with EoE in histological remission and control individuals, and from three newly discovered EoE variants was identified. Histologically Active EoE Diagnostic Panel (HAEDP) consists of 53 genes that were identified based on differential expression between histologically active EoE, histological remission and controls (p≤0.05). By combining the HAEDP with EDP, we expanded our knowledge about factors that may contribute to the inflammation in EoE and improved our understanding of the underlying mechanisms of the disease. Conversely, we suggested a compact group of genes common to both HAEDP and EDP to create a reliable diagnostic tool that might enhance the accuracy of EoE diagnosis. CONCLUSION We identified a novel set of 53 dysregulated genes that are closely associated with the histological inflammatory activity of EoE. In combination with EDP, our new panel might be a valuable tool for the accurate diagnosis of patients with EoE as well as for monitoring their disease course.
Collapse
Affiliation(s)
- Emilie Gueguen
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Yasser Morsy
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Céline Mamie
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alain Schoepfer
- Service de gastro-entérologie et d'hépatologie, Centre hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Catherine Saner
- Service de gastro-entérologie et d'hépatologie, Centre hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Luc Biedermann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alex Straumann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andrea Kreienbühl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marcin Wawrzyniak
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Faley SL, Boghdeh NA, Schaffer DK, Spivey EC, Alem F, Narayanan A, Wikswo JP, Brown JA. Gravity-perfused airway-on-a-chip optimized for quantitative BSL-3 studies of SARS-CoV-2 infection: barrier permeability, cytokine production, immunohistochemistry, and viral load assays. LAB ON A CHIP 2024; 24:1794-1807. [PMID: 38362777 PMCID: PMC10929697 DOI: 10.1039/d3lc00894k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024]
Abstract
Human microphysiological systems, such as organs on chips, are an emerging technology for modeling human physiology in a preclinical setting to understand the mechanism of action of drugs, to evaluate the efficacy of treatment options for human disease and impairment, and to assess drug toxicity. By using human cells co-cultured in three-dimensional constructs, organ chips can provide greater fidelity to the human cellular condition than their two-dimensional predecessors. However, with the rise of SARS-CoV-2 and the global COVID-19 pandemic, it became clear that many microphysiological systems were not compatible with or optimized for studies of infectious disease and operation in a Biosafety Level 3 (BSL-3) environment. Given that one of the early sites of SARS-CoV-2 infection is the airway, we created a human airway organ chip that could operate in a BSL-3 space with high throughput and minimal manipulation, while retaining the necessary physical and physiological components to recapitulate tissue response to infectious agents and the immune response to infection.
Collapse
Affiliation(s)
- Shannon L Faley
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| | - Niloufar A Boghdeh
- Biomedical Research Laboratory, Institute of Biohealth Innovation, George Mason University, Manassas, VA 20110, USA
| | - David K Schaffer
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
| | - Eric C Spivey
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| | - Farhang Alem
- Biomedical Research Laboratory, Institute of Biohealth Innovation, George Mason University, Manassas, VA 20110, USA
| | - Aarthi Narayanan
- Biomedical Research Laboratory, Institute of Biohealth Innovation, George Mason University, Manassas, VA 20110, USA
- College of Science, Department of Biology, George Mason University, Fairfax, VA 22030, USA
| | - John P Wikswo
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Jacquelyn A Brown
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
7
|
Kim S, Xu Z, Forno E, Qin Y, Park HJ, Yue M, Yan Q, Manni ML, Acosta-Pérez E, Canino G, Chen W, Celedón JC. Cis- and trans-eQTM analysis reveals novel epigenetic and transcriptomic immune markers of atopic asthma in airway epithelium. J Allergy Clin Immunol 2023; 152:887-898. [PMID: 37271320 PMCID: PMC10592527 DOI: 10.1016/j.jaci.2023.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/03/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Expression quantitative trait methylation (eQTM) analyses uncover associations between DNA methylation markers and gene expression. Most eQTM analyses of complex diseases have focused on cis-eQTM pairs (within 1 megabase). OBJECTIVES This study sought to identify cis- and trans-methylation markers associated with gene expression in airway epithelium from youth with and without atopic asthma. METHODS In this study, the investigators conducted both cis- and trans-eQTM analyses in nasal (airway) epithelial samples from 158 Puerto Rican youth with atopic asthma and 100 control subjects without atopy or asthma. The investigators then attempted to replicate their findings in nasal epithelial samples from 2 studies of children, while also examining whether their results in nasal epithelium overlap with those from an eQTM analysis in white blood cells from the Puerto Rican subjects. RESULTS This study identified 9,108 cis-eQTM pairs and 2,131,500 trans-eQTM pairs. Trans-associations were significantly enriched for transcription factor and microRNA target genes. Furthermore, significant cytosine-phosphate-guanine sites (CpGs) were differentially methylated in atopic asthma and significant genes were enriched for genes differentially expressed in atopic asthma. In this study, 50.7% to 62.6% of cis- and trans-eQTM pairs identified in Puerto Rican youth were replicated in 2 smaller cohorts at false discovery rate-adjusted P < .1. Replicated genes in the trans-eQTM analysis included biologically plausible asthma-susceptibility genes (eg, HDC, NLRP3, ITGAE, CDH26, and CST1) and are enriched in immune pathways. CONCLUSIONS Studying both cis- and trans-epigenetic regulation of airway epithelial gene expression can identify potential causal and regulatory pathways or networks for childhood asthma. Trans-eQTM CpGs may regulate gene expression in airway epithelium through effects on transcription factor and microRNA target genes.
Collapse
Affiliation(s)
- Soyeon Kim
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Zhongli Xu
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; School of Medicine, Tsinghua University, Beijing, China
| | - Erick Forno
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Yidi Qin
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, Pa
| | - Hyun Jung Park
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, Pa
| | - Molin Yue
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pa
| | - Qi Yan
- Department of Obstetrics and Gynecology, Columbia University, New York, NY
| | - Michelle L Manni
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh
| | - Edna Acosta-Pérez
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Glorisa Canino
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Wei Chen
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; School of Medicine, Tsinghua University, Beijing, China
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pa.
| |
Collapse
|
8
|
Wei J, Beebe-Dimmer J, Shi Z, Sample C, Yan G, Rifkin AS, Sadeghpour A, Gielzak M, Choi S, Moon D, Zheng SL, Helfand BT, Walsh PC, Xu J, Cooney KA, Isaacs WB. Association of rare, recurrent nonsynonymous variants in the germline of prostate cancer patients of African ancestry. Prostate 2023; 83:454-461. [PMID: 36567534 DOI: 10.1002/pros.24477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Although men of African ancestry (AA) have the highest mortality rate from prostate cancer (PCa), relatively little is known about the germline variants that are associated with PCa risk in AA men. The goal of this study is to systematically evaluate rare, recurrent nonsynonymous variants across the exome for their association with PCa in AA men. METHODS Whole exome sequencing (WES) of germline DNA in two AA PCa patient cohorts of Johns Hopkins Hospital (N = 960) and Wayne State University (N = 747) was performed. All nonsynonymous variants present in both case cohorts, with a carrier rate between 0.5% and 1%, were identified. Their carrier rates were compared with rates from 8128 African/African American (AFR) control subjects from The Genome Aggregation Database (gnomAD) using Fisher's exact test. Significant variants, defined as false discovery rate (FDR) adjusted p-value ≤ 0.05, were further evaluated in AA PCa cases (N = 132) and controls (N = 1184) from the UK Biobank (UKB). RESULTS Two variants reached a pre-specified statistical significance level. The first was p.R14Q in GPRC5C (found in 0.47% of PCa cases and 0.01% of population controls); odds ratio (OR) for PCa was 37.46 (95% confidence interval CI 4.68-299.72), pexact = 7.01E-06, FDR-adjusted p-value = 0.05. The second was p.R511Q in IGF1R (found in 0.53% of PCa cases and 0.01% of population controls); OR for PCa was 21.54 (95%CI 4.65-99.76), pexact = 5.51E-06, FDR-adjusted p-value = 0.05. The mean percentage of African ancestry was similar between variant carriers and noncarriers of each variant, p > 0.05. In the UKB AA men, GPRC5C R14Q was 0.76% and 0.08% in cases and controls, respectively, OR for PCa was 9.00 (95%CI 0.56-145.23), pexact = 0.19. However, IGF1R R511Q was not found in cases or controls. CONCLUSIONS This WES study identified two rare, recurrent nonsynonymous PCa risk-associated variants in AA. Confirmation in additional large populations of AA PCa cases and controls is required.
Collapse
Affiliation(s)
- Jun Wei
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
| | - Jennifer Beebe-Dimmer
- Barabara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Zhuqing Shi
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
| | - Christopher Sample
- Department of Medicine, Duke University School of Medicine and Duke Cancer Institute, Durham, North Carolina, USA
| | - Guifang Yan
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Andrew S Rifkin
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
| | - Azita Sadeghpour
- Department of Medicine, Duke University School of Medicine and Duke Cancer Institute, Durham, North Carolina, USA
| | - Marta Gielzak
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sodam Choi
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - David Moon
- Department of Medicine, Duke University School of Medicine and Duke Cancer Institute, Durham, North Carolina, USA
| | - S Lilly Zheng
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
| | - Brian T Helfand
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
- Department of Surgery, University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | - Patrick C Walsh
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jianfeng Xu
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
| | - Kathleen A Cooney
- Department of Medicine, Duke University School of Medicine and Duke Cancer Institute, Durham, North Carolina, USA
| | - William B Isaacs
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Tilston-Lunel AM, Varelas X. Polarity in respiratory development, homeostasis and disease. Curr Top Dev Biol 2023; 154:285-315. [PMID: 37100521 DOI: 10.1016/bs.ctdb.2023.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The respiratory system is composed of a multitude of cells that organize to form complex branched airways that end in alveoli, which respectively function to guide air flow and mediate gas exchange with the bloodstream. The organization of the respiratory sytem relies on distinct forms of cell polarity, which guide lung morphogenesis and patterning in development and provide homeostatic barrier protection from microbes and toxins. The stability of lung alveoli, the luminal secretion of surfactants and mucus in the airways, and the coordinated motion of multiciliated cells that generate proximal fluid flow, are all critical functions regulated by cell polarity, with defects in polarity contributing to respiratory disease etiology. Here, we summarize the current knowledge of cell polarity in lung development and homeostasis, highlighting key roles for polarity in alveolar and airway epithelial function and outlining relationships with microbial infections and diseases, such as cancer.
Collapse
|
10
|
Li CH, Hsu TI, Chang YC, Chan MH, Lu PJ, Hsiao M. Stationed or Relocating: The Seesawing EMT/MET Determinants from Embryonic Development to Cancer Metastasis. Biomedicines 2021; 9:1265. [PMID: 34572451 PMCID: PMC8472300 DOI: 10.3390/biomedicines9091265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial and mesenchymal transition mechanisms continue to occur during the cell cycle and throughout human development from the embryo stage to death. In embryo development, epithelial-mesenchymal transition (EMT) can be divided into three essential steps. First, endoderm, mesoderm, and neural crest cells form, then the cells are subdivided, and finally, cardiac valve formation occurs. After the embryonic period, the human body will be subjected to ongoing mechanical stress or injury. The formation of a wound requires EMT to recruit fibroblasts to generate granulation tissues, repair the wound and re-create an intact skin barrier. However, once cells transform into a malignant tumor, the tumor cells acquire the characteristic of immortality. Local cell growth with no growth inhibition creates a solid tumor. If the tumor cannot obtain enough nutrition in situ, the tumor cells will undergo EMT and invade the basal membrane of nearby blood vessels. The tumor cells are transported through the bloodstream to secondary sites and then begin to form colonies and undergo reverse EMT, the so-called "mesenchymal-epithelial transition (MET)." This dynamic change involves cell morphology, environmental conditions, and external stimuli. Therefore, in this manuscript, the similarities and differences between EMT and MET will be dissected from embryonic development to the stage of cancer metastasis.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
| | - Tai-I Hsu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
| | - Pei-Jung Lu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Clinical Medicine Research Center, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
11
|
Siddiqui S, Johansson K, Joo A, Bonser LR, Koh KD, Le Tonqueze O, Bolourchi S, Bautista RA, Zlock L, Roth TL, Marson A, Bhakta NR, Ansel KM, Finkbeiner WE, Erle DJ, Woodruff PG. Epithelial miR-141 regulates IL-13-induced airway mucus production. JCI Insight 2021; 6:139019. [PMID: 33682796 PMCID: PMC8021117 DOI: 10.1172/jci.insight.139019] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
IL-13-induced goblet cell metaplasia contributes to airway remodeling and pathological mucus hypersecretion in asthma. miRNAs are potent modulators of cellular responses, but their role in mucus regulation is largely unexplored. We hypothesized that airway epithelial miRNAs play roles in IL-13-induced mucus regulation. miR-141 is highly expressed in human and mouse airway epithelium, is altered in bronchial brushings from asthmatic subjects at baseline, and is induced shortly after airway allergen exposure. We established a CRISPR/Cas9-based protocol to target miR-141 in primary human bronchial epithelial cells that were differentiated at air-liquid-interface, and goblet cell hyperplasia was induced by IL-13 stimulation. miR-141 disruption resulted in decreased goblet cell frequency, intracellular MUC5AC, and total secreted mucus. These effects correlated with a reduction in a goblet cell gene expression signature and enrichment of a basal cell gene expression signature defined by single cell RNA sequencing. Furthermore, intranasal administration of a sequence-specific mmu-miR-141-3p inhibitor in mice decreased Aspergillus-induced secreted mucus and mucus-producing cells in the lung and reduced airway hyperresponsiveness without affecting cellular inflammation. In conclusion, we have identified a miRNA that regulates pathological airway mucus production and is amenable to therapeutic manipulation through an inhaled route.
Collapse
Affiliation(s)
- Sana Siddiqui
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
- Sandler Asthma Basic Research Center
| | - Kristina Johansson
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
- Sandler Asthma Basic Research Center
- Department of Microbiology and Immunology
| | - Alex Joo
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
- Sandler Asthma Basic Research Center
| | | | - Kyung Duk Koh
- Lung Biology Center
- Cardiovascular Research Institute
| | | | - Samaneh Bolourchi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
- Sandler Asthma Basic Research Center
| | - Rodriel A. Bautista
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
- Sandler Asthma Basic Research Center
| | | | - Theodore L. Roth
- Department of Microbiology and Immunology
- Biomedical Sciences Graduate Program, and
- Diabetes Center, UCSF, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Alexander Marson
- Department of Microbiology and Immunology
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- J. David Gladstone Institutes, San Francisco, California, USA
- Department of Medicine, Division of Infectious Diseases, UCSF, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Nirav R. Bhakta
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - K. Mark Ansel
- Sandler Asthma Basic Research Center
- Department of Microbiology and Immunology
| | | | - David J. Erle
- Lung Biology Center
- Cardiovascular Research Institute
| | - Prescott G. Woodruff
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
- Sandler Asthma Basic Research Center
- Cardiovascular Research Institute
| |
Collapse
|
12
|
Epithelial cell-adhesion protein cadherin 26 is dysregulated in congenital diaphragmatic hernia and congenital pulmonary airway malformation. Pediatr Surg Int 2021; 37:49-57. [PMID: 33161446 DOI: 10.1007/s00383-020-04769-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Congenital diaphragmatic hernia (CDH) and congenital pulmonary airway malformation (CPAM) are two inborn pathologies of the lung of unknown origin. Alterations of gene expression in airway epithelial cells are involved in the pathobiology of both diseases. We previously found decreased expression of the epithelial cell adhesion protein cadherin 26 (CDH26) in hypoplastic mice lungs. Here, our objective was to describe the expression and localization of CDH26 in hypoplastic CDH lungs and hyperproliferative CPAM tissues. METHODS After ethical approval, we used human lung tissues from CDH and CPAM cases and age-matched control samples from a previously established biobank. Furthermore, lungs from the nitrofen rat model of CDH were included in the study. We performed immunohistochemistry and western blot analysis with antibodies against CDH26 to examine protein localization and abundance. Statistical analysis was performed using Mann-Whitney U test with significance set at p < 0.05. RESULTS We observed an overexpression of CDH26 within the epithelium of cystic CPAM lesions compared to normal airways within the same lung and compared to control lungs. Western blot demonstrated a downregulation of CDH26 in the nitrofen rat model of CDH compared to healthy controls. Immunohistochemistry could not show consistent differences between CDH and control in human and rat lungs. In the studied human lung samples, CDH26 was localized to the apical part of the airway epithelial cells. CONCLUSION CDH26 is differentially expressed in human CPAM lung tissues and may be downregulated in nitrofen-induced hypoplastic rat lungs compared to control lungs. Disruption of CDH26 associated pathways in lung development may be involved in the pathogenesis of lung hypoplasia or cystic lung disease.
Collapse
|
13
|
Lachowicz-Scroggins ME, Dunican EM, Charbit AR, Raymond W, Looney MR, Peters MC, Gordon ED, Woodruff PG, Lefrançais E, Phillips BR, Mauger DT, Comhair SA, Erzurum SC, Johansson MW, Jarjour NN, Coverstone AM, Castro M, Hastie AT, Bleecker ER, Fajt ML, Wenzel SE, Israel E, Levy BD, Fahy JV. Extracellular DNA, Neutrophil Extracellular Traps, and Inflammasome Activation in Severe Asthma. Am J Respir Crit Care Med 2019; 199:1076-1085. [PMID: 30888839 PMCID: PMC6515873 DOI: 10.1164/rccm.201810-1869oc] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/15/2019] [Indexed: 12/30/2022] Open
Abstract
Rationale: Extracellular DNA (eDNA) and neutrophil extracellular traps (NETs) are implicated in multiple inflammatory diseases. NETs mediate inflammasome activation and IL-1β secretion from monocytes and cause airway epithelial cell injury, but the role of eDNA, NETs, and IL-1β in asthma is uncertain. Objectives: To characterize the role of activated neutrophils in severe asthma through measurement of NETs and inflammasome activation. Methods: We measured sputum eDNA in induced sputum from 399 patients with asthma in the Severe Asthma Research Program-3 and in 94 healthy control subjects. We subdivided subjects with asthma into eDNA-low and -high subgroups to compare outcomes of asthma severity and of neutrophil and inflammasome activation. We also examined if NETs cause airway epithelial cell damage that can be prevented by DNase. Measurements and Main Results: We found that 13% of the Severe Asthma Research Program-3 cohort is "eDNA-high," as defined by sputum eDNA concentrations above the upper 95th percentile value in health. Compared with eDNA-low patients with asthma, eDNA-high patients had lower Asthma Control Test scores, frequent history of chronic mucus hypersecretion, and frequent use of oral corticosteroids for maintenance of asthma control (all P values <0.05). Sputum eDNA in asthma was associated with airway neutrophilic inflammation, increases in soluble NET components, and increases in caspase 1 activity and IL-1β (all P values <0.001). In in vitro studies, NETs caused cytotoxicity in airway epithelial cells that was prevented by disruption of NETs with DNase. Conclusions: High extracellular DNA concentrations in sputum mark a subset of patients with more severe asthma who have NETs and markers of inflammasome activation in their airways.
Collapse
Affiliation(s)
- Marrah E Lachowicz-Scroggins
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- 2 Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Eleanor M Dunican
- 3 School of Medicine and St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Annabelle R Charbit
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- 2 Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Wilfred Raymond
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- 2 Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Mark R Looney
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- 2 Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Michael C Peters
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- 2 Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Erin D Gordon
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- 2 Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Prescott G Woodruff
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- 2 Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Emma Lefrançais
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- 2 Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Brenda R Phillips
- 4 Division of Statistics and Bioinformatics, Department of Public Health Sciences, Pennsylvania State University, Hershey, Pennsylvania
| | - David T Mauger
- 4 Division of Statistics and Bioinformatics, Department of Public Health Sciences, Pennsylvania State University, Hershey, Pennsylvania
| | - Suzy A Comhair
- 5 Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio
| | | | | | - Nizar N Jarjour
- 7 Section of Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine, Madison, Wisconsin
| | - Andrea M Coverstone
- 8 Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Mario Castro
- 8 Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Annette T Hastie
- 9 Pulmonary Section, Department of Internal Medicine, School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Eugene R Bleecker
- 10 Division of Genetics, Genomics, and Precision Medicine, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Merritt L Fajt
- 11 Pulmonary, Allergy and Critical Care Medicine Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania;and
| | - Sally E Wenzel
- 11 Pulmonary, Allergy and Critical Care Medicine Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania;and
| | - Elliot Israel
- 12 Division of Pulmonary and Critical Care Medicine, Brigham Research Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bruce D Levy
- 12 Division of Pulmonary and Critical Care Medicine, Brigham Research Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - John V Fahy
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- 2 Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| |
Collapse
|
14
|
Renz H. DNA methylation and a biomarker panel to predict asthma development. J Allergy Clin Immunol 2019; 144:49-50. [PMID: 30981596 DOI: 10.1016/j.jaci.2019.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Harald Renz
- Institute of Laboratory Medicine, Universities of Giessen, and the Marburg Lung Center (UGMLC), Philipps-Universität Marburg, German Center for Lung Research (DZL), Marburg, Germany.
| |
Collapse
|
15
|
Forno E, Celedón JC. Epigenomics and Transcriptomics in the Prediction and Diagnosis of Childhood Asthma: Are We There Yet? Front Pediatr 2019; 7:115. [PMID: 31001502 PMCID: PMC6454089 DOI: 10.3389/fped.2019.00115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/11/2019] [Indexed: 01/15/2023] Open
Abstract
Asthma is the most common non-communicable chronic disease of childhood. Despite its high prevalence, to date we lack methods that are both efficient and accurate in diagnosing asthma. Most traditional approaches have been based on garnering clinical evidence, such as risk factors and exposures. Given the high heritability of asthma, more recent approaches have looked at genetic polymorphisms as potential "risk factors." However, genetic variants explain only a small proportion of asthma risk, and have been less than optimal at predicting risk for individual subjects. Epigenomic studies offer significant advantages over previous approaches. Epigenetic regulation is highly tissue-specific, and can induce both short- and long-term changes in gene expression. Such changes can start in utero, can vary throughout the life span, and in some instances can be passed on from one generation to another. Most importantly, the epigenome can be modified by environmental factors and exposures, and thus epigenetic and transcriptomic profiling may yield the most accurate risk estimates for a given patient by incorporating environmental (and treatment) effects throughout the lifespan. Here we will review the most recent advances in the use of epigenetic and transcriptomic analysis for the early diagnosis of asthma and atopy, as well as challenges and future directions in the field as it moves forward. We will particularly focus on DNA methylation, the most studied mechanism of epigenetic regulation.
Collapse
Affiliation(s)
- Erick Forno
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States.,Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Juan C Celedón
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States.,Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
16
|
Forno E, Wang T, Qi C, Yan Q, Xu CJ, Boutaoui N, Han YY, Weeks DE, Jiang Y, Rosser F, Vonk JM, Brouwer S, Acosta-Perez E, Colón-Semidey A, Alvarez M, Canino G, Koppelman GH, Chen W, Celedón JC. DNA methylation in nasal epithelium, atopy, and atopic asthma in children: a genome-wide study. THE LANCET RESPIRATORY MEDICINE 2018; 7:336-346. [PMID: 30584054 DOI: 10.1016/s2213-2600(18)30466-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Epigenetic mechanisms could alter the airway epithelial barrier and ultimately lead to atopic diseases such as asthma. We aimed to identify DNA methylation profiles that are associated with-and could accurately classify-atopy and atopic asthma in school-aged children. METHODS We did a genome-wide study of DNA methylation in nasal epithelium and atopy or atopic asthma in 483 Puerto Rican children aged 9-20 years, recruited using multistage probability sampling. Atopy was defined as at least one positive IgE (≥0·35 IU/mL) to common aeroallergens, and asthma was defined as a physician's diagnosis plus wheeze in the previous year. Significant (false discovery rate p<0·01) methylation signals were correlated with gene expression, and top CpGs were validated by pyrosequencing. We then replicated our top methylation findings in a cohort of 72 predominantly African American children, and in 432 children from a European birth cohort. Next, we tested classification models based on nasal methylation for atopy or atopic asthma in all cohorts. FINDINGS DNA methylation profiles were markedly different between children with (n=312) and without (n=171) atopy in the Puerto Rico discovery cohort, recruited from Feb 12, 2014, until May 8, 2017. After adjustment for covariates and multiple testing, we found 8664 differentially methylated CpGs by atopy, with false discovery rate-adjusted p values ranging from 9·58 × 10-17 to 2·18 × 10-22 for the top 30 CpGs. These CpGs were in or near genes relevant to epithelial barrier function, including CDHR3 and CDH26, and in other genes related to airway epithelial integrity and immune regulation, such as FBXL7, NTRK1, and SLC9A3. Moreover, 28 of the top 30 CpGs replicated in the same direction in both independent cohorts. Classification models of atopy based on nasal methylation performed well in the Puerto Rico cohort (area under the curve [AUC] 0·93-0·94 and accuracy 85-88%) and in both replication cohorts (AUC 0·74-0·92, accuracy 68-82%). The models also performed well for atopic asthma in the Puerto Rico cohort (AUC 0·95-1·00, accuracy 88%) and the replication cohorts (AUC 0·82-0·88, accuracy 86%). INTERPRETATION We identified specific methylation profiles in airway epithelium that are associated with atopy and atopic asthma in children, and a nasal methylation panel that could classify children by atopy or atopic asthma. Our findings support the feasibility of using the nasal methylome for future clinical applications, such as predicting the development of asthma among wheezing infants. FUNDING US National Institutes of Health.
Collapse
Affiliation(s)
- Erick Forno
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ting Wang
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cancan Qi
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, Netherlands; GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Qi Yan
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cheng-Jian Xu
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, Netherlands; GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nadia Boutaoui
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yueh-Ying Han
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daniel E Weeks
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yale Jiang
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; School of Medicine, Tsinghua University, Beijing, China
| | - Franziska Rosser
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith M Vonk
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, Netherlands; Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sharon Brouwer
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, Netherlands; Department of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Edna Acosta-Perez
- Behavioral Sciences Research Institute of Puerto Rico, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Angel Colón-Semidey
- Department of Pediatrics, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - María Alvarez
- Department of Pediatrics, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Glorisa Canino
- Behavioral Sciences Research Institute of Puerto Rico, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, Netherlands; GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Wei Chen
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Juan C Celedón
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|