1
|
Guccione C, Gervasoni S, Öztürk I, Bosin A, Ruggerone P, Malloci G. Exploring key features of selectivity in somatostatin receptors through molecular dynamics simulations. Comput Struct Biotechnol J 2024; 23:1311-1319. [PMID: 39660216 PMCID: PMC11630666 DOI: 10.1016/j.csbj.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 12/12/2024] Open
Abstract
Somatostatin receptors (SSTRs) are widely distributed throughout the human body and play crucial roles in various physiological processes. They are recognized as key targets for both radiotherapy and radiodiagnosis due to their overexpression in several cancer types. However, the discovery and design of selective drugs for each of the five isoforms have been significantly hindered by the lack of complete structural information. In this study, we conducted a systematic computational analysis of all five SSTRs in complex with the endogenous ligand somatostatin to elucidate their structural and dynamic features. We thoroughly characterized each isoform using available experimental structures for SSTR2 and SSTR4, as well as AlphaFold2 models for SSTR1, SSTR3, and SSTR5. By performing multi-copy μs-long molecular dynamics simulations, we examined the differences and similarities in dynamical behavior and somatostatin binding among all SSTRs. Our analysis focused on understanding the opening and closing movements of the extracellular loop 2, which are crucial for ligand binding and recognition. Interestingly, we observed a unique conformation of somatostatin within the binding pocket of SSTR5 in which the loop can partially close, as compared to the other isoforms. Fingerprint analyses provided distinct interaction patterns of somatostatin with all receptors, thus enabling precise guidelines for the discovery and development of more selective somatostatin-based pharmaceuticals tailored for precision medicine therapies.
Collapse
Affiliation(s)
- C. Guccione
- Department of Physics, University of Cagliari, Monserrato (Cagliari), 09042, Italy
| | - S. Gervasoni
- Department of Physics, University of Cagliari, Monserrato (Cagliari), 09042, Italy
| | - I. Öztürk
- Department of Physics, University of Cagliari, Monserrato (Cagliari), 09042, Italy
| | - A. Bosin
- Department of Physics, University of Cagliari, Monserrato (Cagliari), 09042, Italy
| | - P. Ruggerone
- Department of Physics, University of Cagliari, Monserrato (Cagliari), 09042, Italy
| | - G. Malloci
- Department of Physics, University of Cagliari, Monserrato (Cagliari), 09042, Italy
| |
Collapse
|
2
|
Li YG, Meng XY, Yang X, Ling SL, Shi P, Tian CL, Yang F. Structural insights into somatostatin receptor 5 bound with cyclic peptides. Acta Pharmacol Sin 2024; 45:2432-2440. [PMID: 38926478 PMCID: PMC11489758 DOI: 10.1038/s41401-024-01314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Somatostatin receptor 5 (SSTR5) is highly expressed in ACTH-secreting pituitary adenomas and is an important drug target for the treatment of Cushing's disease. Two cyclic SST analog peptides (pasireotide and octreotide) both can activate SSTR5 and SSTR2. Pasireotide is preferential binding to SSTR5 than octreotide, while octreotide is biased to SSTR2 than SSTR5. The lack of selectivity of both pasireotide and octreotide causes side effects, such as hyperglycemia, gastrointestinal disturbance, and abnormal glucose homeostasis. However, little is known about the binding and selectivity mechanisms of pasireotide and octreotide with SSTR5, limiting the development of subtype-selective SST analog drugs specifically targeting SSTR5. Here, we report two cryo-electron microscopy (cryo-EM) structures of SSTR5-Gi complexes activated by pasireotide and octreoitde at resolutions of 3.09 Å and 3.24 Å, respectively. In combination with structural analysis and functional experiments, our results reveal the molecular mechanisms of ligand recognition and receptor activation. We also demonstrate that pasireotide preferentially binds to SSTR5 through the interactions between Tyr(Bzl)/DTrp of pasireotide and SSTR5. Moreover, we find that the Q2.63, N6.55, F7.35 and ECL2 of SSTR2 play a crucial role in octreotide biased binding of SSTR2. Our results will provide structural insights and offer new opportunities for the drug discovery of better selective pharmaceuticals targeting specific SSTR subtypes.
Collapse
Affiliation(s)
- Ying-Ge Li
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Xian-Yu Meng
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Xiru Yang
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Sheng-Long Ling
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Pan Shi
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
| | - Chang-Lin Tian
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
- The Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Fan Yang
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
3
|
Sandoval KE, Witt KA. Somatostatin: Linking Cognition and Alzheimer Disease to Therapeutic Targeting. Pharmacol Rev 2024; 76:1291-1325. [PMID: 39013601 PMCID: PMC11549939 DOI: 10.1124/pharmrev.124.001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Over 4 decades of research support the link between Alzheimer disease (AD) and somatostatin [somatotropin-releasing inhibitory factor (SRIF)]. SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid-β peptide (Aβ), culminating in cognitive decline and dementia. The connection between the SRIF and AD further extends to the neuropsychiatric symptoms, seizure activity, and inflammation, whereas preclinical AD investigations show SRIF or SRIF receptor agonist administration capable of enhancing cognition. SRIF receptor subtype-4 activation in particular presents unique attributes, with the potential to mitigate learning and memory decline, reduce comorbid symptoms, and enhance enzymatic degradation of Aβ in the brain. Here, we review the links between SRIF and AD along with the therapeutic implications. SIGNIFICANCE STATEMENT: Somatostatin and somatostatin-expressing neurons in the brain are extensively involved in cognition. Loss of somatostatin and somatostatin-expressing neurons in Alzheimer disease rests at the center of a series of interdependent pathological events contributing to cognitive decline and dementia. Targeting somatostatin-mediated processes has significant therapeutic potential for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| |
Collapse
|
4
|
Wang Y, Xu Y, Wang Y, Zhang J, Chen L, He X, Fan W, Wu K, Hu W, Cheng X, Yang G, Xu HE, Zhuang Y, Sun S. Selective ligand recognition and activation of somatostatin receptors SSTR1 and SSTR3. Proc Natl Acad Sci U S A 2024; 121:e2400298121. [PMID: 39361640 PMCID: PMC11474030 DOI: 10.1073/pnas.2400298121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/31/2024] [Indexed: 10/05/2024] Open
Abstract
Somatostatin receptors (SSTRs) exert critical biological functions such as negatively regulating hormone release and cell proliferation, making them popular targets for developing therapeutics to treat endocrine disorders, especially neuroendocrine tumors. Although several panagonists mimicking the endogenous ligand somatostatin are available, the development of more effective and safer somatostatinergic therapies is limited due to a lack of molecular understanding of the ligand recognition and regulation of divergent SSTR subtypes. Here, we report four cryoelectron microscopy structures of Gi-coupled SSTR1 and SSTR3 activated by distinct agonists, including the FDA-approved panagonist pasireotide as well as their selective small molecule agonists L-797591 and L-796778. Our structures reveal a conserved recognition pattern of pasireotide in SSTRs attributed to the binding with a conserved extended binding pocket, distinct from SST14, octreotide, and lanreotide. Together with mutagenesis analyses, our structures further reveal the dynamic feature of ligand binding pockets in SSTR1 and SSTR3 to accommodate divergent agonists, the key determinants of ligand selectivity lying across the orthosteric pocket of different SSTR subtypes, as well as the molecular mechanism underlying diversity and conservation of receptor activation. Our work provides a framework for rational design of subtype-selective SSTR ligands and may facilitate drug development efforts targeting SSTRs with improved therapeutic efficacy and reduced side effects.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai200011, China
| | - Youwei Xu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Yue Wang
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Jie Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai200011, China
| | - Lan Chen
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai200011, China
| | - Xinheng He
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Wenjia Fan
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing210046, China
| | - Kai Wu
- The Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Wen Hu
- The Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Xi Cheng
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Guizhu Yang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai200011, China
| | - H. Eric Xu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Youwen Zhuang
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- Medicinal Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University, Shanghai200025, China
| | - Shuyang Sun
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai200011, China
| |
Collapse
|
5
|
Chowdhury A, Tripathi NM, Jadav R, Gour V, Purohit P, Bandyopadhyay A. On-resin synthesis of Lanreotide epimers and studies of their structure-activity relationships. RSC Med Chem 2024; 15:2766-2772. [PMID: 39149098 PMCID: PMC11324058 DOI: 10.1039/d4md00338a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/27/2024] [Indexed: 08/17/2024] Open
Abstract
Peptide drugs often accompany epimeric impurities (isomers). Therefore, efficient chemical synthesis of epimers is critical to identify them correctly and investigate their biological activities. Here, we report the rapid synthesis and structure-activity relationship (SAR) studies of eight possible epimers of a somatostatin synthetic analog (SSA), lanreotide (LAN). SPPS and the subsequent on-resin rapid disulfide closure method offered >90% conversion yield for all epimers (P1-P8). Further, we developed an analytical method to separate these epimers, which enabled the profiling of five epimeric impurities in the API, purchased for Somatuline generic formulations. In SAR studies, most LAN epimers revealed compromised antiproliferative activity, while the P7 epimer retained antiproliferative activity similar to LAN API, as supported by in silico SAR studies in detail. Additionally, P7 showed serum stability nearly identical to LAN, suggesting that drug epimers could be a potential API. Current studies will further encourage the development of novel SSA scaffolds.
Collapse
Affiliation(s)
- Arnab Chowdhury
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab-140001 India
| | - Nitesh Mani Tripathi
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab-140001 India
| | - Rohit Jadav
- Kashiv BioSciences Pvt Ltd. Block-B, Sardar Patel Ring Rd, opp. Applewoods Township Ahmedabad Gujarat-382210 India
| | - Vinod Gour
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab-140001 India
| | - Parva Purohit
- Kashiv BioSciences Pvt Ltd. Block-B, Sardar Patel Ring Rd, opp. Applewoods Township Ahmedabad Gujarat-382210 India
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab-140001 India
| |
Collapse
|
6
|
Luo M, Yu J, Tang R. Immunological signatures and predictive biomarkers for first-generation somatostatin receptor ligand resistance in Acromegaly. J Neurooncol 2024; 167:415-425. [PMID: 38441839 DOI: 10.1007/s11060-024-04620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/23/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE Predicting resistance to first-generation Somatostatin Receptor Ligands (fg-SRL) in Acromegaly patients remains an ongong challenge. Tumor-associated immune components participate in various pathological processes, including drug-resistance. We aimed to identify the immune components involved in resistance of fg-SRL, and to investigate biomarkers that can be targeted to treat those drug-resistant Acromegaly. METHODS We conducted a retrospective study involving 35 Acromegaly patients with somatotropinomas treated postoperatively with fg-SRL. Gathering clinicopathological data, SSTR2 expression, and immunological profiles, we utilized univariate, binary logistic regression, and ROC analyses to assess their predictive roles in fg-SRL resistance. Spearman correlation analysis further examined interactions among interested characteristics. RESULTS 19 patients (54.29%) exhibited resistance to postoperative fg-SRL. GH level at diagnosis, preoperative tumor volume, T2WI-MRI intensity, granularity, PD-L1, SSTR2, and CD8 + T cell infiltration showed association with clinical outcomes of fg-SRL. Notably, T2WI-MRI hyperintensity, PD-L1-IRS > 7, CD8 + T cell infiltration < 14.8/HPF, and SSTR2-IRS < 5.4 emerged as reliable predictors for fg-SRL resistance. Correlation analysis highlighted a negative relationship between PD-L1 expression and CD8 + T cell infiltration, while showcasing a positive correlation with preoperative tumor volume of somatotropinomas. Additionally, 5 patients with fg-SRL resistance underwent re-operation were involved. Following fg-SRL treatment, significant increases in PD-L1 and SSTR5 expression were observed, while SSTR2 expression decreased in somatotropinoma. CONCLUSION PD-L1 expression and CD8 + T cell infiltration, either independently or combined with SSTR2 expression and T2WI-MRI intensity, could form a predictive model guiding clinical decisions on fg-SRL employment. Furthermore, targeting PD-L1 through immunotherapy and embracing second-generations of SRL with higher affinity to SSTR5 represent promising strategies to tackle fg-SRL resistance in somatotropinomas.
Collapse
Affiliation(s)
- Mei Luo
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiangfan Yu
- Department of Pediatric Dermatology, Dermatology Hospital of Southern Medical University, 510091, Guangzhou, China
| | - Rui Tang
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Clinical Medical Research Center for Systemic Autoimmune Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Mori H, Tamura M, Ogawa R, Kimata Y, Endo S, Sekine K, Kodama S, Watanabe HH, Ookuma K, Jinzaki M. A Case of Pancreatic Neuroendocrine Tumor with Liver Metastases Demonstrating the Possibility of Enhanced ACTH Production by the SACI Test. Case Rep Endocrinol 2024; 2024:5923680. [PMID: 38681235 PMCID: PMC11055651 DOI: 10.1155/2024/5923680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 03/23/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024] Open
Abstract
Objective ACTH-producing pancreatic NETs have a propensity to metastasize, and in patients with metastases, there is no established method yet to precisely determine if the excess ACTH is produced by the primary or the metastatic tumors. Localizing the source of production of ACTH in such cases is important for devising suitable treatment strategies and evaluating the benefit of local therapies from the viewpoint of control of Cushing's syndrome. Methods We performed the selective arterial calcium injection (SACI) test combined with selective portal and hepatic venous sampling in a 32-year-old female patient with ectopic ACTH-producing pancreatic NET and liver metastases. Results The blood level of ACTH after Ca loading was significantly elevated only in the vessels thought to be directly feeding the pancreatic tumor, and Ca loading from any artery did not significantly increase ACTH concentrations in the hepatic veins compared to the main trunk of the portal vein. Conclusions The present case demonstrates that there might be an ACTH-producing p-NET that responds to Ca loading. Further in vitro studies are required to validate this possibility.
Collapse
Affiliation(s)
- Hirozumi Mori
- Department of Radiology, Saitama City Hospital, Saitama, Japan
| | - Masashi Tamura
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Ogawa
- Department of Radiology, Saitama City Hospital, Saitama, Japan
| | - Yuta Kimata
- Department of Medicine, Saitama City Hospital, Saitama, Japan
| | - Sho Endo
- Department of Medicine, Saitama City Hospital, Saitama, Japan
| | | | - Sayuri Kodama
- Department of Radiology, Saitama City Hospital, Saitama, Japan
| | | | - Kiyoshi Ookuma
- Department of Radiology, Saitama City Hospital, Saitama, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Zhang C, Liu F, Zhang Y, Song C. Macrocycles and macrocyclization in anticancer drug discovery: Important pieces of the puzzle. Eur J Med Chem 2024; 268:116234. [PMID: 38401189 DOI: 10.1016/j.ejmech.2024.116234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/26/2024]
Abstract
Increasing disease-related proteins have been identified as novel therapeutic targets. Macrocycles are emerging as potential solutions, bridging the gap between conventional small molecules and biomacromolecules in drug discovery. Inspired by successful macrocyclic drugs of natural origins, macrocycles are attracting more attention for enhanced binding affinity and target selectivity. Due to the conformation constraint and structure preorganization, macrocycles can reach bioactive conformations more easily than parent acyclic compounds. Also, rational macrocyclization combined with sequent structural modification will help improve oral bioavailability and combat drug resistance. This review introduces various strategies to enhance membrane permeability in macrocyclization and subsequent modification, such as N-methylation, intramolecular hydrogen bonding modulation, isomerization, and reversible bicyclization. Several case studies highlight macrocyclic inhibitors targeting kinases, HDAC, and protein-protein interactions. Finally, some macrocyclic agents targeting tumor microenvironments are illustrated.
Collapse
Affiliation(s)
- Chao Zhang
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China
| | - Fenfen Liu
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Chun Song
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
9
|
Guarrochena X, Kanellopoulos P, Stingeder A, Rečnik LM, Feiner IVJ, Brandt M, Kandioller W, Maina T, Nock BA, Mindt TL. Amide-to-Triazole Switch in Somatostatin-14-Based Radioligands: Impact on Receptor Affinity and In Vivo Stability. Pharmaceutics 2024; 16:392. [PMID: 38543286 PMCID: PMC10976246 DOI: 10.3390/pharmaceutics16030392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 11/28/2024] Open
Abstract
The use of metabolically stabilized, radiolabeled somatostatin (SST) analogs ([68Ga]Ga/[177Lu]Lu-DOTA-TATE/TOC/NOC) is well established in nuclear medicine. Despite the pivotal role of these radioligands in the diagnosis and therapy of neuroendocrine tumors (NETs), their inability to interact with all five somatostatin receptors (SST1-5R) limits their clinical potential. [111In]In-AT2S is a radiolabeled DOTA-conjugate derived from the parent peptide SST-14 that exhibits high binding affinity to all SSTR subtypes, but its poor metabolic stability represents a serious disadvantage for clinical use. In order to address this issue, we have replaced strategic trans-amide bonds of [111In]In-AT2S with metabolically stable 1,4-disubstituted 1,2,3-triazole bioisosteres. From the five cyclic triazolo-peptidomimetics investigated, only [111In]In-XG1 combined a preserved nanomolar affinity for the SST1,2,3,5R subtypes in vitro and an improved stability in vivo (up to 17% of intact peptide 5 min postinjection (pi) versus 6% for [111In]In-AT2S). The involvement of neprilysin (NEP) in the metabolism of [111In]In-XG1 was confirmed by coadministration of Entresto®, a registered antihypertensive drug, in vivo releasing the selective and potent NEP-inhibitor sacubitrilat. A pilot SPECT/CT imaging study conducted in mice bearing hSST2R-positive xenografts failed to visualize the xenografts due to the pronounced kidney uptake (>200% injected activity (IA)/g at 4 h pi), likely the result of the formation of cationic metabolites. To corroborate the imaging data, the tumors and the kidneys were excised and analyzed with a γ-counter. Even if receptor-specific tumor uptake for [111In]In-XG1 could be confirmed (1.61% IA/g), further optimization is required to improve its pharmacokinetic properties for radiotracer development.
Collapse
Affiliation(s)
- Xabier Guarrochena
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, AKH Wien c/o Sekretariat Nuklearmedizin, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | | | - Anna Stingeder
- Ludwig Boltzmann Institute Applied Diagnostics, AKH Wien c/o Sekretariat Nuklearmedizin, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Lisa-Maria Rečnik
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, AKH Wien c/o Sekretariat Nuklearmedizin, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Irene V. J. Feiner
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, AKH Wien c/o Sekretariat Nuklearmedizin, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Marie Brandt
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, AKH Wien c/o Sekretariat Nuklearmedizin, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15341 Athens, Greece
| | - Berthold A. Nock
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15341 Athens, Greece
| | - Thomas L. Mindt
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, AKH Wien c/o Sekretariat Nuklearmedizin, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
10
|
AghaAmiri S, Ghosh SC, Hernandez Vargas S, Halperin DM, Azhdarinia A. Somatostatin Receptor Subtype-2 Targeting System for Specific Delivery of Temozolomide. J Med Chem 2024; 67:2425-2437. [PMID: 38346097 PMCID: PMC10896214 DOI: 10.1021/acs.jmedchem.3c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 02/23/2024]
Abstract
Temozolomide (TMZ) is a DNA alkylating agent that produces objective responses in patients with neuroendocrine tumors (NETs) when the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is inactivated. At high doses, TMZ therapy exhausts MGMT activity but also produces dose-limiting toxicities. To reduce off-target effects, we converted the clinically approved radiotracer 68Ga-DOTA-TOC into a peptide-drug conjugate (PDC) for targeted delivery of TMZ to somatostatin receptor subtype-2 (SSTR2)-positive tumor cells. We used an integrated radiolabeling strategy for direct quantitative assessment of receptor binding, pharmacokinetics, and tissue biodistribution. In vitro studies revealed selective binding to SSTR2-positive cells with high affinity (5.98 ± 0.96 nmol/L), internalization, receptor-dependent DNA damage, cytotoxicity, and MGMT depletion. Imaging and biodistribution analysis showed preferential accumulation of the PDC in receptor-positive tumors and high renal clearance. This study identified a trackable SSTR2-targeting system for TMZ delivery and utilizes a modular design that could be broadly applied in PDC development.
Collapse
Affiliation(s)
- Solmaz AghaAmiri
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, 1881 East Road, 3SCR6.4680, Houston, Texas 77054, United States
| | - Sukhen C. Ghosh
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, 1881 East Road, 3SCR6.4680, Houston, Texas 77054, United States
| | - Servando Hernandez Vargas
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, 1881 East Road, 3SCR6.4680, Houston, Texas 77054, United States
| | - Daniel M. Halperin
- Department
of Gastrointestinal Medical Oncology, The
University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Ali Azhdarinia
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, 1881 East Road, 3SCR6.4680, Houston, Texas 77054, United States
| |
Collapse
|
11
|
Hansen MS, Madsen K, Price M, Søe K, Omata Y, Zaiss MM, Gorvin CM, Frost M, Rauch A. Transcriptional reprogramming during human osteoclast differentiation identifies regulators of osteoclast activity. Bone Res 2024; 12:5. [PMID: 38263167 PMCID: PMC10806178 DOI: 10.1038/s41413-023-00312-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Enhanced osteoclastogenesis and osteoclast activity contribute to the development of osteoporosis, which is characterized by increased bone resorption and inadequate bone formation. As novel antiosteoporotic therapeutics are needed, understanding the genetic regulation of human osteoclastogenesis could help identify potential treatment targets. This study aimed to provide an overview of transcriptional reprogramming during human osteoclast differentiation. Osteoclasts were differentiated from CD14+ monocytes from eight female donors. RNA sequencing during differentiation revealed 8 980 differentially expressed genes grouped into eight temporal patterns conserved across donors. These patterns revealed distinct molecular functions associated with postmenopausal osteoporosis susceptibility genes based on RNA from iliac crest biopsies and bone mineral density SNPs. Network analyses revealed mutual dependencies between temporal expression patterns and provided insight into subtype-specific transcriptional networks. The donor-specific expression patterns revealed genes at the monocyte stage, such as filamin B (FLNB) and oxidized low-density lipoprotein receptor 1 (OLR1, encoding LOX-1), that are predictive of the resorptive activity of mature osteoclasts. The expression of differentially expressed G-protein coupled receptors was strong during osteoclast differentiation, and these receptors are associated with bone mineral density SNPs, suggesting that they play a pivotal role in osteoclast differentiation and activity. The regulatory effects of three differentially expressed G-protein coupled receptors were exemplified by in vitro pharmacological modulation of complement 5 A receptor 1 (C5AR1), somatostatin receptor 2 (SSTR2), and free fatty acid receptor 4 (FFAR4/GPR120). Activating C5AR1 enhanced osteoclast formation, while activating SSTR2 decreased the resorptive activity of mature osteoclasts, and activating FFAR4 decreased both the number and resorptive activity of mature osteoclasts. In conclusion, we report the occurrence of transcriptional reprogramming during human osteoclast differentiation and identified SSTR2 and FFAR4 as antiresorptive G-protein coupled receptors and FLNB and LOX-1 as potential molecular markers of osteoclast activity. These data can help future investigations identify molecular regulators of osteoclast differentiation and activity and provide the basis for novel antiosteoporotic targets.
Collapse
Affiliation(s)
- Morten S Hansen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000, Odense C, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, DK-5000, Odense C, Denmark
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, DK-5000, Odense C, Denmark
| | - Kaja Madsen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000, Odense C, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, DK-5000, Odense C, Denmark
| | - Maria Price
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham, B15 2TT, UK
- Centre for Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, B15 2TT, UK
| | - Kent Søe
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, DK-5000, Odense C, Denmark
- Department of Molecular Medicine, University of Southern Denmark, DK-5000, Odense C, Denmark
| | - Yasunori Omata
- Department of Orthopedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, D-91054, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, D-91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, D-91054, Erlangen, Germany
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham, B15 2TT, UK
- Centre for Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, B15 2TT, UK
| | - Morten Frost
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000, Odense C, Denmark.
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, DK-5000, Odense C, Denmark.
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000, Odense C, Denmark.
| | - Alexander Rauch
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000, Odense C, Denmark.
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, DK-5000, Odense C, Denmark.
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000, Odense C, Denmark.
| |
Collapse
|
12
|
Coskun D, Lihan M, Rodrigues JPGLM, Vass M, Robinson D, Friesner RA, Miller EB. Using AlphaFold and Experimental Structures for the Prediction of the Structure and Binding Affinities of GPCR Complexes via Induced Fit Docking and Free Energy Perturbation. J Chem Theory Comput 2024; 20:477-489. [PMID: 38100422 DOI: 10.1021/acs.jctc.3c00839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Free energy perturbation (FEP) remains an indispensable method for computationally assaying prospective compounds in advance of synthesis. However, before FEP can be deployed prospectively, it must demonstrate retrospective recapitulation of known experimental data where the subtle details of the atomic ligand-receptor model are consequential. An open question is whether AlphaFold models can serve as useful initial models for FEP in the regime where there exists a congeneric series of known chemical matter but where no experimental structures are available either of the target or of close homologues. As AlphaFold structures are provided without a bound ligand, we employ induced fit docking to refine the AlphaFold models in the presence of one or more congeneric ligands. In this work, we first validate the performance of our latest induced fit docking technology, IFD-MD, on a retrospective set of public experimental GPCR structures with 95% of cross-docks producing a pose with a ligand RMSD ≤ 2.5 Å in the top two predictions. We then apply IFD-MD and FEP on AlphaFold models of the somatostatin receptor family of GPCRs. We use AlphaFold models produced prior to the availability of any experimental structure from this family. We arrive at FEP-validated models for SSTR2, SSTR4, and SSTR5, with RMSE around 1 kcal/mol, and explore the challenges of model validation under scenarios of limited ligand data, ample ligand data, and categorical data.
Collapse
Affiliation(s)
- Dilek Coskun
- Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| | - Muyun Lihan
- Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| | | | - Márton Vass
- Schrödinger Technologies Limited, Davidson House, First Floor, Reading RG1 3 EU, U.K
| | - Daniel Robinson
- Schrödinger Technologies Limited, Davidson House, First Floor, Reading RG1 3 EU, U.K
| | - Richard A Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, MC 3110, New York, New York 10036, United States
| | - Edward B Miller
- Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| |
Collapse
|
13
|
Patel VK, Vaishnaw A, Shirbhate E, Kore R, Singh V, Veerasamy R, Rajak H. Cortisol as a Target for Treating Mental Disorders: A Promising Avenue for Therapy. Mini Rev Med Chem 2024; 24:588-600. [PMID: 37861053 DOI: 10.2174/0113895575262104230928042150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/19/2023] [Accepted: 08/05/2023] [Indexed: 10/21/2023]
Abstract
Cortisol, commonly known as the "stress hormone," plays a critical role in the body's response to stress. Elevated cortisol levels have been associated with various mental disorders, including anxiety, depression, and post-traumatic stress disorder. Consequently, researchers have explored cortisol modulation as a promising avenue for treating these conditions. However, the availability of research on cortisol as a therapeutic option for mental disorders is limited, and existing studies employ diverse methodologies and outcome measures. This review article aimed to provide insights into different treatment approaches, both pharmacological and non-pharmacological, which can effectively modulate cortisol levels. Pharmacological interventions involve the use of substances, such as somatostatin analogs, dopamine agonists, corticotropin-releasing hormone antagonists, and cortisol synthesis inhibitors. Additionally, non-pharmacological techniques, including cognitivebehavioral therapy, herbs and supplements, transcranial magnetic stimulation, lifestyle changes, and surgery, have been investigated to reduce cortisol levels. The emerging evidence suggests that cortisol modulation could be a promising treatment option for mental disorders. However, more research is needed to fully understand the effectiveness and safety of these therapies.
Collapse
Affiliation(s)
- Vijay K Patel
- Pushpendra College of Pharmacy, Ambikapur, Surguja 497101, (C.G.), India
| | - Aayush Vaishnaw
- Dr. C.V. Raman Institute of Pharmacy, Dr. C.V. Raman University, Bilaspur, C.G. 495113, India
| | - Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidas University, Bilaspur 495 009, (C.G.), India
| | - Rakesh Kore
- Department of Pharmacy, Guru Ghasidas University, Bilaspur 495 009, (C.G.), India
| | - Vaibhav Singh
- Department of Pharmacy, Guru Ghasidas University, Bilaspur 495 009, (C.G.), India
| | - Ravichandran Veerasamy
- Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidas University, Bilaspur 495 009, (C.G.), India
| |
Collapse
|
14
|
Milewska-Kranc A, Ćwikła JB, Kolasinska-Ćwikła A. The Role of Receptor-Ligand Interaction in Somatostatin Signaling Pathways: Implications for Neuroendocrine Tumors. Cancers (Basel) 2023; 16:116. [PMID: 38201544 PMCID: PMC10778465 DOI: 10.3390/cancers16010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Neuroendocrine tumors (NETs) arise from neuroendocrine cells and manifest in diverse organs. Key players in their regulation are somatostatin and its receptors (SSTR1-SSTR5). Understanding receptor-ligand interactions and signaling pathways is vital for elucidating their role in tumor development and therapeutic potential. This review highlights SSTR characteristics, localization, and expression in tissues, impacting physiological functions. Mechanisms of somatostatin and synthetic analogue binding to SSTRs, their selectivity, and their affinity were analyzed. Upon activation, somatostatin initiates intricate intracellular signaling, involving cAMP, PLC, and MAP kinases and influencing growth, differentiation, survival, and hormone secretion in NETs. This review explores SSTR expression in different tumor types, examining receptor activation effects on cancer cells. SSTRs' significance as therapeutic targets is discussed. Additionally, somatostatin and analogues' role in hormone secretion regulation, tumor growth, and survival is emphasized, presenting relevant therapeutic examples. In conclusion, this review advances the knowledge of receptor-ligand interactions and signaling pathways in somatostatin receptors, with potential for improved neuroendocrine tumor treatments.
Collapse
Affiliation(s)
| | - Jarosław B. Ćwikła
- School of Medicine, University of Warmia and Mazury, Aleja Warszawska 30, 10-082 Olsztyn, Poland
- Diagnostic Therapeutic Center–Gammed, Lelechowska 5, 02-351 Warsaw, Poland
| | | |
Collapse
|
15
|
Yu X, Yang X, Nie H, Jiang W, He X, Ou C. Immunological role and prognostic value of somatostatin receptor family members in colon adenocarcinoma. Front Pharmacol 2023; 14:1255809. [PMID: 37900156 PMCID: PMC10603271 DOI: 10.3389/fphar.2023.1255809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Colon adenocarcinoma (COAD) is among the most prevalent cancers worldwide, ranking as the third most prevalent malignancy in incidence and mortality. The somatostatin receptor (SSTR) family comprises G-protein-coupled receptors (GPCRs), which couple to inhibitory G proteins (Gi and Go) upon binding to somatostatin (SST) analogs. GPCRs are involved in hormone release, neurotransmission, cell growth inhibition, and cancer suppression. However, their roles in COAD remain unclear. This study used bioinformatics to investigate the expression, prognosis, gene alterations, functional enrichment, and immunoregulatory effects of the SSTR family members in COAD. SSTR1-4 are differentially downregulated in COAD, and low SSTR2 expression indicates poor survival. Biological processes and gene expression enrichment of the SSTR family in COAD were further analyzed using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology. A strong correlation was observed between SSTR expression and immune cell infiltration. We also quantified SSTR2 expression in 25 COAD samples and adjacent normal tissues using quantitative real-time polymerase chain reaction. We analyzed its correlation with the dendritic cell-integrin subunit alpha X marker gene. The biomarker exploration of the solid tumors portal was used to confirm the correlation between SSTR2 with immunomodulators and immunotherapy responses. Our results identify SSTR2 as a promising target for COAD immunotherapy. Our findings provide new insights into the biological functions of the SSTR family and their implications for the prognosis of COAD.
Collapse
Affiliation(s)
- Xiaoqian Yu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuejie Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenying Jiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Ghosh P, Raj N, Verma H, Patel M, Chakraborti S, Khatri B, Doreswamy CM, Anandakumar SR, Seekallu S, Dinesh MB, Jadhav G, Yadav PN, Chatterjee J. An amide to thioamide substitution improves the permeability and bioavailability of macrocyclic peptides. Nat Commun 2023; 14:6050. [PMID: 37770425 PMCID: PMC10539501 DOI: 10.1038/s41467-023-41748-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
Solvent shielding of the amide hydrogen bond donor (NH groups) through chemical modification or conformational control has been successfully utilized to impart membrane permeability to macrocyclic peptides. We demonstrate that passive membrane permeability can also be conferred by masking the amide hydrogen bond acceptor (>C = O) through a thioamide substitution (>C = S). The membrane permeability is a consequence of the lower desolvation penalty of the macrocycle resulting from a concerted effect of conformational restriction, local desolvation of the thioamide bond, and solvent shielding of the amide NH groups. The enhanced permeability and metabolic stability on thioamidation improve the bioavailability of a macrocyclic peptide composed of hydrophobic amino acids when administered through the oral route in rats. Thioamidation of a bioactive macrocyclic peptide composed of polar amino acids results in analogs with longer duration of action in rats when delivered subcutaneously. These results highlight the potential of O to S substitution as a stable backbone modification in improving the pharmacological properties of peptide macrocycles.
Collapse
Affiliation(s)
- Pritha Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Nishant Raj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Hitesh Verma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Monika Patel
- Neuroscience & Ageing Biology, CSIR-CDRI, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sohini Chakraborti
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Bhavesh Khatri
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Chandrashekar M Doreswamy
- Department of Pre-clinical Research, Anthem Biosciences Pvt. Ltd., Bangalore, 560099, Karnataka, India
| | - S R Anandakumar
- Department of Pre-clinical Research, Anthem Biosciences Pvt. Ltd., Bangalore, 560099, Karnataka, India
| | - Srinivas Seekallu
- Department of Pre-clinical Research, Anthem Biosciences Pvt. Ltd., Bangalore, 560099, Karnataka, India
| | - M B Dinesh
- Central Animal Facility, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Gajanan Jadhav
- Eurofins Advinus Biopharma Services India Pvt. Ltd., Bangalore, 560058, Karnataka, India
| | - Prem Narayan Yadav
- Neuroscience & Ageing Biology, CSIR-CDRI, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jayanta Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
17
|
Gervasoni S, Öztürk I, Guccione C, Bosin A, Ruggerone P, Malloci G. Interaction of Radiopharmaceuticals with Somatostatin Receptor 2 Revealed by Molecular Dynamics Simulations. J Chem Inf Model 2023; 63:4924-4933. [PMID: 37466559 PMCID: PMC10428218 DOI: 10.1021/acs.jcim.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 07/20/2023]
Abstract
The development of drugs targeting somatostatin receptor 2 (SSTR2), generally overexpressed in neuroendocrine tumors, is focus of intense research. A few molecules in conjugation with radionuclides are in clinical use for both diagnostic and therapeutic purposes. These radiopharmaceuticals are composed of a somatostatin analogue biovector conjugated to a chelator moiety bearing the radionuclide. To date, despite valuable efforts, a detailed molecular-level description of the interaction of radiopharmaceuticals in complex with SSTR2 has not yet been accomplished. Therefore, in this work, we carefully analyzed the key dynamical features and detailed molecular interactions of SSTR2 in complex with six radiopharmaceutical compounds selected among the few already in use (64Cu/68Ga-DOTATATE, 68Ga-DOTATOC, 64Cu-SARTATE) and some in clinical development (68Ga-DOTANOC, 64Cu-TETATATE). Through molecular dynamics simulations and exploiting recently available structures of SSTR2, we explored the influence of the different portions of the compounds (peptide, radionuclide, and chelator) in the interaction with the receptor. We identified the most stable binding modes and found distinct interaction patterns characterizing the six compounds. We thus unveiled detailed molecular interactions crucial for the recognition of this class of radiopharmaceuticals. The microscopically well-founded analysis presented in this study provides guidelines for the design of new potent ligands targeting SSTR2.
Collapse
Affiliation(s)
| | | | - Camilla Guccione
- Department of Physics, University of Cagliari, Monserrato
(Cagliari) I-09042, Italy
| | - Andrea Bosin
- Department of Physics, University of Cagliari, Monserrato
(Cagliari) I-09042, Italy
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Monserrato
(Cagliari) I-09042, Italy
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Monserrato
(Cagliari) I-09042, Italy
| |
Collapse
|
18
|
Modena D, Moras ML, Sandrone G, Stevenazzi A, Vergani B, Dasgupta P, Kliever A, Gulde S, Marangelo A, Schillmaier M, Luque RM, Bäuerle S, Pellegata NS, Schulz S, Steinkühler C. Identification of a Novel SSTR3 Full Agonist for the Treatment of Nonfunctioning Pituitary Adenomas. Cancers (Basel) 2023; 15:3453. [PMID: 37444563 DOI: 10.3390/cancers15133453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Somatostatin receptor (SSTR) agonists have been extensively used for treating neuroendocrine tumors. Synthetic therapeutic agonists showing selectivity for SSTR2 (Octreotide) or for SSTR2 and SSTR5 (Pasireotide) have been approved for the treatment of patients with acromegaly and Cushing's syndrome, as their pituitary tumors highly express SSTR2 or SSTR2/SSTR5, respectively. Nonfunctioning pituitary adenomas (NFPAs), which express high levels of SSTR3 and show only modest response to currently available SSTR agonists, are often invasive and cannot be completely resected, and therefore easily recur. The aim of the present study was the evaluation of ITF2984, a somatostatin analog and full SSTR3 agonist, as a new potential treatment for NFPAs. ITF2984 shows a 10-fold improved affinity for SSTR3 compared to Octreotide or Pasireotide. Molecular modeling and NMR studies indicated that the higher affinity for SSTR3 correlates with a higher stability of a distorted β-I turn in the cyclic peptide backbone. ITF2984 induces receptor internalization and phosphorylation, and triggers G-protein signaling at pharmacologically relevant concentrations. Furthermore, ITF2984 displays antitumor activity that is dependent on SSTR3 expression levels in the MENX (homozygous mutant) NFPA rat model, which closely recapitulates human disease. Therefore, ITF2984 may represent a novel therapeutic option for patients affected by NFPA.
Collapse
Affiliation(s)
- Daniela Modena
- Preclinical R&D, Italfarmaco Group, 20092 Cinisello Balsamo, Milan, Italy
| | - Maria Luisa Moras
- Preclinical R&D, Italfarmaco Group, 20092 Cinisello Balsamo, Milan, Italy
| | - Giovanni Sandrone
- Preclinical R&D, Italfarmaco Group, 20092 Cinisello Balsamo, Milan, Italy
| | - Andrea Stevenazzi
- Preclinical R&D, Italfarmaco Group, 20092 Cinisello Balsamo, Milan, Italy
| | - Barbara Vergani
- Preclinical R&D, Italfarmaco Group, 20092 Cinisello Balsamo, Milan, Italy
| | - Pooja Dasgupta
- Institute of Pharmacology and Toxicology, Universitätsklinikum Jena, Friedrich-Schiller-Universität, 07747 Jena, Germany
| | - Andrea Kliever
- Institute of Pharmacology and Toxicology, Universitätsklinikum Jena, Friedrich-Schiller-Universität, 07747 Jena, Germany
| | - Sebastian Gulde
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Alessandro Marangelo
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Mathias Schillmaier
- Department of Nuclear Medicine, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 80333 Munich, Germany
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 80333 Munich, Germany
| | - Raul M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Stephen Bäuerle
- Department of Mathematics, Technical University Munich, 85748 Garching, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Universitätsklinikum Jena, Friedrich-Schiller-Universität, 07747 Jena, Germany
| | | |
Collapse
|
19
|
Gervasoni S, Guccione C, Fanti V, Bosin A, Cappellini G, Golosio B, Ruggerone P, Malloci G. Molecular simulations of SSTR2 dynamics and interaction with ligands. Sci Rep 2023; 13:4768. [PMID: 36959237 PMCID: PMC10036620 DOI: 10.1038/s41598-023-31823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/17/2023] [Indexed: 03/25/2023] Open
Abstract
The cyclic peptide hormone somatostatin regulates physiological processes involved in growth and metabolism, through its binding to G-protein coupled somatostatin receptors. The isoform 2 (SSTR2) is of particular relevance for the therapy of neuroendocrine tumours for which different analogues to somatostatin are currently in clinical use. We present an extensive and systematic computational study on the dynamics of SSTR2 in three different states: active agonist-bound, inactive antagonist-bound and apo inactive. We exploited the recent burst of SSTR2 experimental structures to perform μs-long multi-copy molecular dynamics simulations to sample conformational changes of the receptor and rationalize its binding to different ligands (the agonists somatostatin and octreotide, and the antagonist CYN154806). Our findings suggest that the apo form is more flexible compared to the holo ones, and confirm that the extracellular loop 2 closes upon the agonist octreotide but not upon the antagonist CYN154806. Based on interaction fingerprint analyses and free energy calculations, we found that all peptides similarly interact with residues buried into the binding pocket. Conversely, specific patterns of interactions are found with residues located in the external portion of the pocket, at the basis of the extracellular loops, particularly distinguishing the agonists from the antagonist. This study will help in the design of new somatostatin-based compounds for theranostics of neuroendocrine tumours.
Collapse
Affiliation(s)
- Silvia Gervasoni
- Department of Physics, University of Cagliari, 09042, Monserrato (Cagliari), Italy
| | - Camilla Guccione
- Department of Physics, University of Cagliari, 09042, Monserrato (Cagliari), Italy
| | - Viviana Fanti
- Department of Physics, University of Cagliari, 09042, Monserrato (Cagliari), Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042, Monserrato (Cagliari), Italy
| | - Andrea Bosin
- Department of Physics, University of Cagliari, 09042, Monserrato (Cagliari), Italy
| | - Giancarlo Cappellini
- Department of Physics, University of Cagliari, 09042, Monserrato (Cagliari), Italy
| | - Bruno Golosio
- Department of Physics, University of Cagliari, 09042, Monserrato (Cagliari), Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042, Monserrato (Cagliari), Italy
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, 09042, Monserrato (Cagliari), Italy
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, 09042, Monserrato (Cagliari), Italy.
| |
Collapse
|
20
|
Zhao J, Fu H, Yu J, Hong W, Tian X, Qi J, Sun S, Zhao C, Wu C, Xu Z, Cheng L, Chai R, Yan W, Wei X, Shao Z. Prospect of acromegaly therapy: molecular mechanism of clinical drugs octreotide and paltusotine. Nat Commun 2023; 14:962. [PMID: 36810324 PMCID: PMC9944328 DOI: 10.1038/s41467-023-36673-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Somatostatin receptor 2 (SSTR2) is highly expressed in neuroendocrine tumors and represents as a therapeutic target. Several peptide analogs mimicking the endogenous ligand somatostatin are available for clinical use, but poor therapeutic effects occur in a subset of patients, which may be correlated with subtype selectivity or cell surface expression. Here, we clarify the signal bias profiles of the first-generation peptide drug octreotide and a new-generation small molecule paltusotine by evaluating their pharmacological characteristics. We then perform cryo-electron microscopy analysis of SSTR2-Gi complexes to determine how the drugs activate SSTR2 in a selective manner. In this work, we decipher the mechanism of ligand recognition, subtype selectivity and signal bias property of SSTR2 sensing octreotide and paltusotine, which may aid in designing therapeutic drugs with specific pharmacological profiles against neuroendocrine tumors.
Collapse
Affiliation(s)
- Jie Zhao
- Division of Nephrology and Kidney Research Institute, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hong Fu
- Division of Nephrology and Kidney Research Institute, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jingjing Yu
- Division of Nephrology and Kidney Research Institute, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weiqi Hong
- Division of Nephrology and Kidney Research Institute, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jieyu Qi
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Suyue Sun
- Division of Nephrology and Kidney Research Institute, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chang Zhao
- Division of Nephrology and Kidney Research Institute, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zheng Xu
- Division of Nephrology and Kidney Research Institute, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lin Cheng
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China. .,Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xiawei Wei
- Division of Nephrology and Kidney Research Institute, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China. .,Department of Nephrology, Hainan General Hospital, Haikou, Hainan, 570311, China.
| |
Collapse
|
21
|
Angelousi A, Koumarianou A, Chatzellis E, Kaltsas G. Resistance of neuroendocrine tumours to somatostatin analogs. Expert Rev Endocrinol Metab 2023; 18:33-52. [PMID: 36651768 DOI: 10.1080/17446651.2023.2166488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
INTRODUCTION A common feature shared by most neuroendocrine tumors (NETs) is the expression on their surface of somatostatin receptors (SSTRs) that are essential for their pathophysiological regulation, diagnosis, and management. The first-generation synthetic somatostatin analogs (SSAs), octreotide and lanreotide, constitute the cornerstone of treatment for growth hormone secreting pituitary adenomas and functioning, progressive functioning, and non-functioning gastro-entero-pancreatic (GEP-NETs). SSAs exert their mechanism of action through binding to the SSTRs; however, their therapeutic response is frequently attenuated or diminished by the development of resistance. The phenomenon of resistance is complex implicating the presence of additional epigenetic and genetic mechanisms. AREAS COVERED We aim to analyze the molecular, genetic, and epigenetic mechanisms of resistance to SSA treatment. We also summarize recent clinical data related to the development of resistance on conventional and non-conventional modes of administration of the first-generation SSAs and the second-generation SSA pasireotide. We explore mechanisms used to counteract the resistance to SSAs using higher doses or more frequent mode of administration of SSAs and/or combination treatments. EXPERT OPINION There is considerable heterogeneity in the development of resistance to SSAs that is tumor-specific necessitating the delineation of the underlying pathophysiological processes to further expand their therapeutic applications.
Collapse
Affiliation(s)
- Anna Angelousi
- First Department of Internal Medicine, Unit of Endocrinology, Laikon General hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Koumarianou
- Hematology Oncology Unit, Fourth Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Chatzellis
- Endocrinology Diabetes and Metabolism Department, 251 Hellenic Air Force and VA General Hospital, Athens, Greece
| | - Gregory Kaltsas
- First Propaedeutic Department of Internal Medicine, Endocrine Unit, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|