1
|
Hsieh CH, Chang YTS, Yen MR, Hsieh JWA, Chen PY. Predicting protein synergistic effect in Arabidopsis using epigenome profiling. Nat Commun 2024; 15:9160. [PMID: 39448614 PMCID: PMC11502919 DOI: 10.1038/s41467-024-53565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Histone modifications can regulate transcription epigenetically by marking specific genomic loci, which can be mapped using chromatin immunoprecipitation sequencing (ChIP-seq). Here we present QHistone, a predictive database of 1534 ChIP-seqs from 27 histone modifications in Arabidopsis, offering three key functionalities. Firstly, QHistone employs machine learning to predict the epigenomic profile of a query protein, characterized by its most associated histone modifications, and uses these modifications to infer the protein's role in transcriptional regulation. Secondly, it predicts synergistic regulatory activities between two proteins by comparing their profiles. Lastly, it detects previously unexplored co-regulating protein pairs by screening all known proteins. QHistone accurately identifies histone modifications associated with specific known proteins, and allows users to computationally validate their results using gene expression data from various plant tissues. These functions demonstrate an useful approach to utilizing epigenome data for gene regulation analysis, making QHistone a valuable resource for the scientific community ( https://qhistone.paoyang.ipmb.sinica.edu.tw ).
Collapse
Affiliation(s)
- Chih-Hung Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | | | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Jo-Wei Allison Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan.
| |
Collapse
|
2
|
Zhang W, Cheng L, Li K, Xie L, Ji J, Lei X, Jiang A, Chen C, Li H, Li P, Sun Q. Evolutional heterochromatin condensation delineates chromocenter formation and retrotransposon silencing in plants. NATURE PLANTS 2024; 10:1215-1230. [PMID: 39014153 DOI: 10.1038/s41477-024-01746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
Heterochromatic condensates (chromocenters) are critical for maintaining the silencing of heterochromatin. It is therefore puzzling that the presence of chromocenters is variable across plant species. Here we reveal that variations in the plant heterochromatin protein ADCP1 confer a diversity in chromocenter formation via phase separation. ADCP1 physically interacts with the high mobility group protein HMGA to form a complex and mediates heterochromatin condensation by multivalent interactions. The loss of intrinsically disordered regions (IDRs) in ADCP1 homologues during evolution has led to the absence of prominent chromocenter formation in various plant species, and introduction of IDR-containing ADCP1 with HMGA promotes heterochromatin condensation and retrotransposon silencing. Moreover, plants in the Cucurbitaceae group have evolved an IDR-containing chimaera of ADCP1 and HMGA, which remarkably enables formation of chromocenters. Together, our work uncovers a coevolved mechanism of phase separation in packing heterochromatin and silencing retrotransposons.
Collapse
Affiliation(s)
- Weifeng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lingling Cheng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Kuan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Leiming Xie
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinyao Ji
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xue Lei
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Anjie Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Chunlai Chen
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haitao Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Pilong Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
3
|
Xu G, Law JA. Loops, crosstalk, and compartmentalization: it takes many layers to regulate DNA methylation. Curr Opin Genet Dev 2024; 84:102147. [PMID: 38176333 PMCID: PMC10922829 DOI: 10.1016/j.gde.2023.102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024]
Abstract
DNA methylation is a conserved epigenetic modification associated with transposon silencing and gene regulation. The stability of this modification relies on intimate connections between DNA and histone modifications that generate self-reinforcing loops wherein the presence of one mark promotes the other. However, it is becoming increasingly clear that the efficiency of these loops is affected by cross-talk between pathways and by chromatin accessibility, which is heavily influenced by histone variants. Focusing primarily on plants, this review provides an update on the aforementioned self-reinforcing loops, highlights recent advances in understanding how DNA methylation pathways are restricted to prevent encroachment on genes, and discusses the roles of histone variants in compartmentalizing epigenetic pathways within the genome. This multilayered approach facilitates two essential, yet opposing functions, the ability to maintain heritable DNA methylation patterns while retaining the flexibility to modify these patterns during development.
Collapse
Affiliation(s)
- Guanghui Xu
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA. https://twitter.com/@GuanghuiXu1
| | - Julie A Law
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Zhou X, Wei M, Nie W, Xi Y, Peng L, Zheng Q, Tang K, Satheesh V, Wang Y, Luo J, Du X, Liu R, Yang Z, La H, Zhong Y, Yang Y, Zhu JK, Du J, Lei M. The H3K9me2-binding protein AGDP3 limits DNA methylation and transcriptional gene silencing in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2385-2395. [PMID: 36149781 DOI: 10.1111/jipb.13369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation, a conserved epigenetic mark, is critical for tuning temporal and spatial gene expression. The Arabidopsis thaliana DNA glycosylase/lyase REPRESSOR OF SILENCING 1 (ROS1) initiates active DNA demethylation and is required to prevent DNA hypermethylation at thousands of genomic loci. However, how ROS1 is recruited to specific loci is not well understood. Here, we report the discovery of Arabidopsis AGENET Domain Containing Protein 3 (AGDP3) as a cellular factor that is required to prevent gene silencing and DNA hypermethylation. AGDP3 binds to H3K9me2 marks in its target DNA via its AGD12 cassette. Analysis of the crystal structure of the AGD12 cassette of AGDP3 in complex with an H3K9me2 peptide revealed that dimethylated H3K9 and unmodified H3K4 are specifically anchored into two different surface pockets. A histidine residue located in the methyllysine binding aromatic cage provides AGDP3 with pH-dependent H3K9me2 binding capacity. Our results uncover a molecular mechanism for the regulation of DNA demethylation by the gene silencing mark H3K9me2.
Collapse
Affiliation(s)
- Xuelin Zhou
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengwei Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenfeng Nie
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yue Xi
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Peng
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Qijie Zheng
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Kai Tang
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, Idiana, 47906, USA
| | - Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yuhua Wang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinyan Luo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Xuan Du
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhenlin Yang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Honggui La
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yingli Zhong
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yu Yang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, Idiana, 47906, USA
| | - Jiamu Du
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| |
Collapse
|