1
|
Zhang Z, Ma W, Wang H, Ren Z, Liu Y, He K, Zhang F, Ye W, Huo W, Li W, Ma X, Yang D. Characterization of the wall-associated kinase (WAK) gene family in Gossypium barbadense reveals the positive role of GbWAK5 in salt tolerance. PLANT CELL REPORTS 2024; 44:18. [PMID: 39738693 DOI: 10.1007/s00299-024-03407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025]
Abstract
KEY MESSAGE We characterized the WAK gene family in Gossypium barbadense and revealed the potential function of GbWAK5 in regulating salt tolerance by modulating ion homeostasis. Soil salinization is one of the main factors restricting cotton production. Although the role of the wall-associated kinases (WAKs) in plants has been extensively studied, its response to salt stress in sea-island cotton (Gossypium barbadense L.) has not been reported. Here, we conducted a whole-genome analysis of the WAK gene family in G. barbadense, identifying a total of 70 GbWAK genes, which were classified into five clades. Segmental and tandem duplication events have contributed to the expansion of the GbWAK gene family. A large number of cis-acting elements were predicted in the GbWAK promoter region. Through RNA sequencing, 37 GbWAKs that potentially play a role in cotton's response to salt stress were screened out, among which 10 genes with sustained up-regulated expression were confirmed by quantitative real-time PCR (qRT-PCR). GbWAK5, a member of Clade II, was significantly up-regulated following NaCl treatment and exhibited a typical WAK structure. Subcellular localization indicated that GbWAK5 is localized on the plasma membrane. Virus-induced gene silencing (VIGS) experiments revealed that the knockdown of GbWAK5 resulted in more severe dehydration and wilting in plants compared to the control under NaCl treatment. RNA-seq analysis revealed that several ion transport-related genes were down-regulated in TRV:GbWAK5 plants under salt stress, while TRV:GbWAK5 plants accumulated more Na+ and exhibited a higher Na+/K+ ratio compared to TRV:00 plants. These results offer a comprehensive analysis of the G. barbadense WAK gene family for the first time, and conclude that GbWAK5 is a promising gene for improving cotton's resistance to salt stress.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Wenyu Ma
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Weinan Vocational and Technical College, Weinan, 714026, China
| | - Haijuan Wang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Xinjiang Production and Construction Corps Seventh Division Agricultural Research Institute, Kuitun, 833200, China
| | - Zhongying Ren
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Yangai Liu
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Kunlun He
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Fei Zhang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Wuwei Ye
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wenqi Huo
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Li
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Daigang Yang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|
2
|
Guo JF, Zhou H, Hu ZR, Yang YL, Wang WB, Zhang YR, Li X, Mulati N, Li YX, Wu L, Long Y, He JM. The Arabidopsis heterotrimeric G protein α subunit binds to and inhibits the inward rectifying potassium channel KAT1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 352:112363. [PMID: 39710151 DOI: 10.1016/j.plantsci.2024.112363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
In animal cells, Gα subunit of the heterotrimeric G proteins can bind to both the N-terminal and C-terminal domains of G-protein-activated inwardly rectifying K+ channels (GIRKs) to inhibit their activities. In Arabidopsis guard cells, the Gα subunit GPA1 mediates multiple stimuli-regulated stomatal movements via inhibiting guard cell inward-rectifying K+ (K+in) current, but it remains unclear whether GPA1 directly interacts with and inhibits the activities of K+in channels. Here, we found that GPA1 interacted with the transmembrane domain rather than the intracellular domain of the Shaker family K+in channel KAT1. Two-Electrode Voltage-Clamp experiments in Xenopus oocytes demonstrated that GPA1 significantly inhibited KAT1 channel activity. However, GPA1 could not inhibit the assembly of KAT1 as well as KAT2 as homo- and hetero-tetramers and alter the subcellular localization and protein stability of these channels. In conclusion, these findings reveal a novel regulatory mechanism for Gα inhibition of the Shaker family K+in channel KAT1 via binding to its channel transmembrane domains but without affecting its subcellular localization, protein stability and the formation of functional homo- and hetero-tetramers. This suggests that in both animal and plant cells, Gα can regulate K+in channels through physical interaction, albeit with differing mechanisms of interaction and regulation.
Collapse
Affiliation(s)
- Jiang-Fan Guo
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Hui Zhou
- State key laboratory of crop stress adaptation and improvement, Henan University, Kaifeng 450046, China
| | - Zhuo-Ran Hu
- State key laboratory of crop stress adaptation and improvement, Henan University, Kaifeng 450046, China
| | - Ya-Lan Yang
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Wen-Bin Wang
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yan-Ru Zhang
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xue Li
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Nuerkaimaier Mulati
- College of Life and Geographic Sciences, Kashi University, Kashi, Xinjiang 844000, China
| | - Ying-Xin Li
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lu Wu
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Long
- State key laboratory of crop stress adaptation and improvement, Henan University, Kaifeng 450046, China.
| | - Jun-Min He
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
3
|
Jiang S, Lan Z, Zhang Y, Kang X, Zhao L, Wu X, Gao H. Mechanisms by Which Exogenous Substances Enhance Plant Salt Tolerance through the Modulation of Ion Membrane Transport and Reactive Oxygen Species Metabolism. Antioxidants (Basel) 2024; 13:1050. [PMID: 39334709 PMCID: PMC11428486 DOI: 10.3390/antiox13091050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Soil salinization is one of the major abiotic stresses affecting plant growth and development. Plant salt tolerance is controlled by complex metabolic pathways. Exploring effective methods and mechanisms to improve crop salt tolerance has been a key aspect of research on the utilization of saline soil. Exogenous substances, such as plant hormones and signal transduction substances, can regulate ion transmembrane transport and eliminate reactive oxygen species (ROS) to reduce salt stress damage by activating various metabolic processes. In this review, we summarize the mechanisms by which exogenous substances regulate ion transmembrane transport and ROS metabolism to improve plant salt tolerance. The molecular and physiological relationships among exogenous substances in maintaining the ion balance and enhancing ROS clearance are examined, and trends and research directions for the application of exogenous substances for improving plant salt tolerance are proposed.
Collapse
Affiliation(s)
- Shiqing Jiang
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Zuwen Lan
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yinkang Zhang
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Xinna Kang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang 050080, China
| | - Liran Zhao
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Xiaolei Wu
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Hongbo Gao
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
4
|
Zhang C, Zhang R, Yuan J. Potassium-mediated bacterial chemotactic response. eLife 2024; 12:RP91452. [PMID: 38832501 PMCID: PMC11149930 DOI: 10.7554/elife.91452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Bacteria in biofilms secrete potassium ions to attract free swimming cells. However, the basis of chemotaxis to potassium remains poorly understood. Here, using a microfluidic device, we found that Escherichia coli can rapidly accumulate in regions of high potassium concentration on the order of millimoles. Using a bead assay, we measured the dynamic response of individual flagellar motors to stepwise changes in potassium concentration, finding that the response resulted from the chemotaxis signaling pathway. To characterize the chemotactic response to potassium, we measured the dose-response curve and adaptation kinetics via an Förster resonance energy transfer (FRET) assay, finding that the chemotaxis pathway exhibited a sensitive response and fast adaptation to potassium. We further found that the two major chemoreceptors Tar and Tsr respond differently to potassium. Tar receptors exhibit a biphasic response, whereas Tsr receptors respond to potassium as an attractant. These different responses were consistent with the responses of the two receptors to intracellular pH changes. The sensitive response and fast adaptation allow bacteria to sense and localize small changes in potassium concentration. The differential responses of Tar and Tsr receptors to potassium suggest that cells at different growth stages respond differently to potassium and may have different requirements for potassium.
Collapse
Affiliation(s)
- Chi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of ChinaHefeiChina
| | - Rongjing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of ChinaHefeiChina
| | - Junhua Yuan
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of ChinaHefeiChina
| |
Collapse
|
5
|
Rovira A, Veciana N, Basté-Miquel A, Quevedo M, Locascio A, Yenush L, Toledo-Ortiz G, Leivar P, Monte E. PIF transcriptional regulators are required for rhythmic stomatal movements. Nat Commun 2024; 15:4540. [PMID: 38811542 PMCID: PMC11137129 DOI: 10.1038/s41467-024-48669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Stomata govern the gaseous exchange between the leaf and the external atmosphere, and their function is essential for photosynthesis and the global carbon and oxygen cycles. Rhythmic stomata movements in daily dark/light cycles prevent water loss at night and allow CO2 uptake during the day. How the actors involved are transcriptionally regulated and how this might contribute to rhythmicity is largely unknown. Here, we show that morning stomata opening depends on the previous night period. The transcription factors PHYTOCHROME-INTERACTING FACTORS (PIFs) accumulate at the end of the night and directly induce the guard cell-specific K+ channel KAT1. Remarkably, PIFs and KAT1 are required for blue light-induced stomata opening. Together, our data establish a molecular framework for daily rhythmic stomatal movements under well-watered conditions, whereby PIFs are required for accumulation of KAT1 at night, which upon activation by blue light in the morning leads to the K+ intake driving stomata opening.
Collapse
Affiliation(s)
- Arnau Rovira
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Nil Veciana
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Aina Basté-Miquel
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Martí Quevedo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
- Department of biomedical science, Faculty of Health Sciences, Universidad CEU Cardenal Herrera, Alfara del Patriarca (Valencia), Spain
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Gabriela Toledo-Ortiz
- James Hutton Institute, Cell and Molecular Sciences, Errol Road Invergowrie, Dundee, UK
| | - Pablo Leivar
- Laboratory of Biochemistry, Institut Químic de Sarrià (IQS), Universitat Ramon Llull, Barcelona, Spain
| | - Elena Monte
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
| |
Collapse
|
6
|
Li X, Xu Y, Zhang J, Xu K, Zheng X, Luo J, Lu J. Integrative physiology and transcriptome reveal salt-tolerance differences between two licorice species: Ion transport, Casparian strip formation and flavonoids biosynthesis. BMC PLANT BIOLOGY 2024; 24:272. [PMID: 38605293 PMCID: PMC11007891 DOI: 10.1186/s12870-024-04911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Glycyrrhiza inflata Bat. and Glycyrrhiza uralensis Fisch. are both original plants of 'Gan Cao' in the Chinese Pharmacopoeia, and G. uralensis is currently the mainstream variety of licorice and has a long history of use in traditional Chinese medicine. Both of these species have shown some degree of tolerance to salinity, G. inflata exhibits higher salt tolerance than G. uralensis and can grow on saline meadow soils and crusty saline soils. However, the regulatory mechanism responsible for the differences in salt tolerance between different licorice species is unclear. Due to land area-related limitations, the excavation and cultivation of licorice varieties in saline-alkaline areas that both exhibit tolerance to salt and contain highly efficient active substances are needed. The systematic identification of the key genes and pathways associated with the differences in salt tolerance between these two licorice species will be beneficial for cultivating high-quality salt-tolerant licorice G. uralensis plant varieties and for the long-term development of the licorice industry. In this research, the differences in growth response indicators, ion accumulation, and transcription expression between the two licorice species were analyzed. RESULTS This research included a comprehensive comparison of growth response indicators, including biomass, malondialdehyde (MDA) levels, and total flavonoids content, between two distinct licorice species and an analysis of their ion content and transcriptome expression. In contrast to the result found for G. uralensis, the salt treatment of G. inflata ensured the stable accumulation of biomass and total flavonoids at 0.5 d, 15 d, and 30 d and the restriction of Na+ to the roots while allowing for more K+ and Ca2+ accumulation. Notably, despite the increase in the Na+ concentration in the roots, the MDA concentration remained low. Transcriptome analysis revealed that the regulatory effects of growth and ion transport on the two licorice species were strongly correlated with the following pathways and relevant DEGs: the TCA cycle, the pentose phosphate pathway, and the photosynthetic carbon fixation pathway involved in carbon metabolism; Casparian strip formation (lignin oxidation and translocation, suberin formation) in response to Na+; K+ and Ca2+ translocation, organic solute synthesis (arginine, polyamines, GABA) in response to osmotic stresses; and the biosynthesis of the nonenzymatic antioxidants carotenoids and flavonoids in response to antioxidant stress. Furthermore, the differential expression of the DEGs related to ABA signaling in hormone transduction and the regulation of transcription factors such as the HSF and GRAS families may be associated with the remarkable salt tolerance of G. inflata. CONCLUSION Compared with G. uralensis, G. inflata exhibits greater salt tolerance, which is primarily attributable to factors related to carbon metabolism, endodermal barrier formation and development, K+ and Ca2+ transport, biosynthesis of carotenoids and flavonoids, and regulation of signal transduction pathways and salt-responsive transcription factors. The formation of the Casparian strip, especially the transport and oxidation of lignin precursors, is likely the primary reason for the markedly higher amount of Na+ in the roots of G. inflata than in those of G. uralensis. The tendency of G. inflata to maintain low MDA levels in its roots under such conditions is closely related to the biosynthesis of flavonoids and carotenoids and the maintenance of the osmotic balance in roots by the absorption of more K+ and Ca2+ to meet growth needs. These findings may provide new insights for developing and cultivating G. uralensis plant species selected for cultivation in saline environments or soils managed through agronomic practices that involve the use of water with a high salt content.
Collapse
Affiliation(s)
- Xin Li
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Ying Xu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jiade Zhang
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Ke Xu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xuerong Zheng
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jiafen Luo
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jiahui Lu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
7
|
Li S, Wang Y, Wang C, Zhang Y, Sun D, Zhou P, Tian C, Liu S. Cryo-EM structure reveals a symmetry reduction of the plant outward-rectifier potassium channel SKOR. Cell Discov 2023; 9:67. [PMID: 37391403 PMCID: PMC10313817 DOI: 10.1038/s41421-023-00572-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/30/2023] [Indexed: 07/02/2023] Open
Affiliation(s)
- Siyu Li
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuanxia Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Chenyang Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Yong Zhang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Demeng Sun
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Peng Zhou
- School of Life Science, Hefei Normal University, Hefei, Anhui, China.
| | - Changlin Tian
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China.
- The Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China.
| | - Sanling Liu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
8
|
Wang Q, Li S, Li F, Tian X, Li Z. Identification of Shaker Potassium Channel Family Members in Gossypium hirsutum L. and Characterization of GhKAT1aD. Life (Basel) 2023; 13:1461. [PMID: 37511836 PMCID: PMC10381577 DOI: 10.3390/life13071461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 07/30/2023] Open
Abstract
K+ channels of the Shaker family have been shown to play crucial roles in K+ uptake and transport. Cotton (Gossypium hirsutum) is an important cash crop. In this study, the 24 Shaker family genes were identified in cotton. Phylogenetic analysis suggests that they were assigned to five clusters. Additionally, their chromosomal location, conserved motifs and gene structure were analyzed. The promoter of cotton Shaker K+ channel genes comprises drought-, low-temperature-, phytohormone-response elements, etc. As indicated by qRT-PCR (quantitative real-time PCR), cotton Shaker K+ channel genes responded to low K+ and NaCl, and especially dehydration stress, at the transcript level. Moreover, one of the Shaker K+ channel genes, GhKAT1aD, was characterized. This gene is localized in the plasma membrane and is predicted to contain six transmembrane segments. It restored the growth of the yeast mutant strain defective in K+ uptake, and silencing GhKAT1a via VIGS (virus-induced gene silencing) resulted in more severe symptoms of K+ deficiency in cotton leaves as well as a lower net K+ uptake rate. The results of this study showed the overall picture of the cotton Shaker K+ channel family regarding bioinformatics as well as the function of one of its members, which provide clues for future investigations of cotton K+ transport and molecular insights for breeding K+-efficient cotton varieties.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Shuying Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Fangjun Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Xiaoli Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| |
Collapse
|
9
|
Structural basis for the activity regulation of a potassium channel AKT1 from Arabidopsis. Nat Commun 2022; 13:5682. [PMID: 36167696 PMCID: PMC9515098 DOI: 10.1038/s41467-022-33420-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
The voltage-gated potassium channel AKT1 is responsible for primary K+ uptake in Arabidopsis roots. AKT1 is functionally activated through phosphorylation and negatively regulated by a potassium channel α-subunit AtKC1. However, the molecular basis for the modulation mechanism remains unclear. Here we report the structures of AKT1, phosphorylated-AKT1, a constitutively-active variant, and AKT1-AtKC1 complex. AKT1 is assembled in 2-fold symmetry at the cytoplasmic domain. Such organization appears to sterically hinder the reorientation of C-linkers during ion permeation. Phosphorylated-AKT1 adopts an alternate 4-fold symmetric conformation at cytoplasmic domain, which indicates conformational changes associated with symmetry switch during channel activation. To corroborate this finding, we perform structure-guided mutagenesis to disrupt the dimeric interface and identify a constitutively-active variant Asp379Ala mediates K+ permeation independently of phosphorylation. This variant predominantly adopts a 4-fold symmetric conformation. Furthermore, the AKT1-AtKC1 complex assembles in 2-fold symmetry. Together, our work reveals structural insight into the regulatory mechanism for AKT1. Arabidopsis thaliana potassium channel AKT1 is responsible for primary K + uptake from soil, which is functionally activated through phosphorylation and negatively regulated by an α-subunit AtKC1. Here, the authors report the structures of AKT1 at different states, revealing a 2- fold to 4-fold symmetry switch at cytoplasmic domain associated with AKT1 activity regulation.
Collapse
|
10
|
Kashtoh H, Baek KH. Structural and Functional Insights into the Role of Guard Cell Ion Channels in Abiotic Stress-Induced Stomatal Closure. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122774. [PMID: 34961246 PMCID: PMC8707303 DOI: 10.3390/plants10122774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
A stomatal pore is formed by a pair of specialized guard cells and serves as a major gateway for water transpiration and atmospheric CO2 influx for photosynthesis in plants. These pores must be tightly controlled, as inadequate CO2 intake and excessive water loss are devastating for plants. When the plants are exposed to extreme weather conditions such as high CO2 levels, O3, low air humidity, and drought, the turgor pressure of the guard cells exhibits an appropriate response against these stresses, which leads to stomatal closure. This phenomenon involves a complex network of ion channels and their regulation. It is well-established that the turgor pressure of guard cells is regulated by ions transportation across the membrane, such as anions and potassium ions. In this review, the guard cell ion channels are discussed, highlighting the structure and functions of key ion channels; the SLAC1 anion channel and KAT1 potassium channel, and their regulatory components, emphasizing their significance in guard cell response to various stimuli.
Collapse
|
11
|
Fu L, Wang Y, Jiang J, Lu B, Zhai J. Sandwich "Ion Pool"-Structured Power Gating for Salinity Gradient Generation Devices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35197-35206. [PMID: 34266231 DOI: 10.1021/acsami.1c10183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoconfinement ion transport, similar to that of biological ion channels, has attracted widespread research interest and offers prospects for broad applications in energy conversion and nanofluidic diodes. At present, various methods were adopted to improve the rectification performance of nanofluidic diodes including geometrical, chemical, and electrostatic asymmetries. However, contributions of the confinement effects within the channels were neglected, which can be a crucial factor for ion rectification behavior. In this research, we report an "ion pool"-structured nanofluidic diode to improve the confinement effect of the system, which was constructed based on an anodic aluminum oxide (AAO) nanoporous membrane sandwiched between zeolitic imidazolate framework 8 (ZIF-8) and tungsten oxide (WO3) thin membranes. A high rectification ratio of 192 is obtained through this nanofluidic system due to ions could be enriched or depleted sufficiently within the ion pool. Furthermore, this high-rectification-ratio ion pool-structured nanofluidic diode possessed pH-responsive and excellent ion selectivity. We developed it as a pH-responsive power gating for a salinity gradient harvesting device by controlling the surface charge density of the ion pool nanochannel narrow ends with different pH values, and hence, the ionic gate is switched between On and Off states, with a gating ratio of up to 27, which exhibited 8 times increase than ZIF-8-AAO and AAO-WO3 composite membranes. Significantly, the peculiar ion pool structure can generate high rectification ratios due to the confinement effect, which then achieves high gating ratios. Such ion pool-structured nanochannels created new avenues to design and optimize nanofluidic diodes and boosted their applications in energy conversion areas.
Collapse
Affiliation(s)
- Lulu Fu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Yuting Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Jiaqiao Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Bingxin Lu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Jin Zhai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|