1
|
Kim J, Choi C. Orphan GPCRs in Neurodegenerative Disorders: Integrating Structural Biology and Drug Discovery Approaches. Curr Issues Mol Biol 2024; 46:11646-11664. [PMID: 39451571 PMCID: PMC11505999 DOI: 10.3390/cimb46100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Neurodegenerative disorders, particularly Alzheimer's and Parkinson's diseases, continue to challenge modern medicine despite therapeutic advances. Orphan G-protein-coupled receptors (GPCRs) have emerged as promising targets in the central nervous system, offering new avenues for drug development. This review focuses on the structural biology of orphan GPCRs implicated in these disorders, providing a comprehensive analysis of their molecular architecture and functional mechanisms. We examine recent breakthroughs in structural determination techniques, such as cryo-electron microscopy and X-ray crystallography, which have elucidated the intricate conformations of these receptors. The review highlights how structural insights inform our understanding of orphan GPCR activation, ligand binding and signaling pathways. By integrating structural data with molecular pharmacology, we explore the potential of structure-guided approaches in developing targeted therapeutics toward orphan GPCRs. This structural-biology-centered perspective aims to deepen our comprehension of orphan GPCRs and guide future drug discovery efforts in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jinuk Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea;
| | | |
Collapse
|
2
|
Sajkowska JJ, Tsang CH, Kozielewicz P. Application of FRET- and BRET-based live-cell biosensors in deorphanization and ligand discovery studies on orphan G protein-coupled receptors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100174. [PMID: 39084335 DOI: 10.1016/j.slasd.2024.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Bioluminescence- and fluorescence-based resonance energy transfer assays have gained considerable attention in pharmacological research as high-throughput scalable tools applicable to drug discovery. To this end, G protein-coupled receptors represent the biggest target class for marketed drugs, and among them, orphan G protein-coupled receptors have the biggest untapped therapeutic potential. In this review, the cases where biophysical methods, BRET and FRET, were employed for deorphanization and ligand discovery studies on orphan G protein-coupled receptors are listed and discussed.
Collapse
Affiliation(s)
- Joanna J Sajkowska
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Choi Har Tsang
- Department of Physiology and Pharmacology, Molecular Pharmacology of GPCRs, Karolinska Institute, Stockholm, Sweden
| | - Paweł Kozielewicz
- Department of Physiology and Pharmacology, Molecular Pharmacology of GPCRs, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
3
|
Russell I, Zhang X, Bumbak F, McNeill SM, Josephs TM, Leeming MG, Christopoulos G, Venugopal H, Flocco MM, Sexton PM, Wootten D, Belousoff MJ. Lipid-Dependent Activation of the Orphan G Protein-Coupled Receptor, GPR3. Biochemistry 2024; 63:625-631. [PMID: 38376112 PMCID: PMC10919283 DOI: 10.1021/acs.biochem.3c00647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
The class A orphan G protein-coupled receptor (GPCR), GPR3, has been implicated in a variety of conditions, including Alzheimer's and premature ovarian failure. GPR3 constitutively couples with Gαs, resulting in the production of cAMP in cells. While tool compounds and several putative endogenous ligands have emerged for the receptor, its endogenous ligand, if it exists, remains a mystery. As novel potential drug targets, the structures of orphan GPCRs have been of increasing interest, revealing distinct modes of activation, including autoactivation, presence of constitutively activating mutations, or via cryptic ligands. Here, we present a cryo-electron microscopy (cryo-EM) structure of the orphan GPCR, GPR3 in complex with DNGαs and Gβ1γ2. The structure revealed clear density for a lipid-like ligand that bound within an extended hydrophobic groove, suggesting that the observed "constitutive activity" was likely due to activation via a lipid that may be ubiquitously present. Analysis of conformational variance within the cryo-EM data set revealed twisting motions of the GPR3 transmembrane helices that appeared coordinated with changes in the lipid-like density. We propose a mechanism for the binding of a lipid to its putative orthosteric binding pocket linked to the GPR3 dynamics.
Collapse
Affiliation(s)
- Isabella
C. Russell
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
- Australian
Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
| | - Xin Zhang
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
- Australian
Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
| | - Fabian Bumbak
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
- Australian
Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
| | - Samantha M. McNeill
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
| | - Tracy M. Josephs
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
- Australian
Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
| | - Michael G. Leeming
- Bio21
Molecular Science & Biotechnology Institute, Melbourne Mass Spectrometry
and Proteomics Facility, The University
of Melbourne, Melbourne, VIC 3052, Australia
| | - George Christopoulos
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
| | - Hariprasad Venugopal
- Ramaciotti
Centre for Cryo Electron Microscopy, Monash University, Clayton 3800, Victoria Australia
| | - Maria M. Flocco
- Mechanistic
and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB20AA, United Kingdom
| | - Patrick M. Sexton
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
- Australian
Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
| | - Denise Wootten
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
- Australian
Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
| | - Matthew J. Belousoff
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
- Australian
Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria Australia
| |
Collapse
|