1
|
Vogel M, Engeroff P. A Comparison of Natural and Therapeutic Anti-IgE Antibodies. Antibodies (Basel) 2024; 13:58. [PMID: 39051334 PMCID: PMC11270207 DOI: 10.3390/antib13030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2024] [Revised: 06/17/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Immunoglobulin E (IgE) plays a critical role for the immune system, fighting against parasites, toxins, and cancer. However, when it reacts to allergens without proper regulation, it can cause allergic reactions, including anaphylaxis, through a process initiated by effector cells such as basophils and mast cells. These cells display IgE on their surface, bound to the high-affinity IgE receptor FcεRI. A cross-linking antigen then triggers degranulation and the release of inflammatory mediators from the cells. Therapeutic monoclonal anti-IgE antibodies such as omalizumab, disrupt this process and are used to manage IgE-related conditions such as severe allergic asthma and chronic spontaneous urticaria. Interestingly, naturally occurring anti-IgE autoantibodies circulate at surprisingly high levels in healthy humans and mice and may thus be instrumental in regulating IgE activity. Although many open questions remain, recent studies have shed new light on their role as IgE regulators and their mechanism of action. Here, we summarize the latest insights on natural anti-IgE autoantibodies, and we compare their functional features to therapeutic monoclonal anti-IgE autoantibodies.
Collapse
Affiliation(s)
- Monique Vogel
- Department of Rheumatology and Immunology, University Hosptial of Bern, 3010 Bern, Switzerland;
- Department for BioMedical Research, University of Bern, 3012 Bern, Switzerland
| | - Paul Engeroff
- Department of Rheumatology and Immunology, University Hosptial of Bern, 3010 Bern, Switzerland;
- Department for BioMedical Research, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
2
|
Jandus C, Jandus P. Effects of Intravenous Immunoglobulins on Human Innate Immune Cells: Collegium Internationale Allergologicum Update 2024. Int Arch Allergy Immunol 2024; 185:975-996. [PMID: 38852585 DOI: 10.1159/000539069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Intravenous immunoglobulin (IVIg) has been used for almost 40 years in the treatment of autoimmune and systemic inflammatory diseases. Numerous cells are involved in the innate immune response, including monocytes/macrophages, neutrophils, dendritic cells, mast cells, basophils, eosinophils, natural killer cells, and innate lymphoid cells. Many studies have investigated the mechanisms by which IVIg down-modulates inflammatory and autoimmune processes of innate immune cells. However, questions remain regarding the precise mechanism of action in autoimmune or inflammatory conditions. The aim of this work was to review the immunomodulatory effect of IVIg on only human innate immune cells. A narrative review approach was chosen to summarize key evidence on the immunomodulatory effects of commercially available and unmodified IVIg on human innate immune cells. SUMMARY Numerous different immunomodulatory effects of IVIg have been reported, with some very different effects depending on the immune cell type and disease. Several limitations of the different studies were identified. Of the 77 studies identified and reviewed, 29 (37.7%) dealt with autoimmune or inflammatory diseases. Otherwise, the immunomodulatory effects of IVIg were studied only in healthy donors using an in vitro experimental approach. Some of the documented effects showed disease-specific effects, such as in Kawasaki disease. Various methodological limitations have also been identified that may reduce the validity of some studies. KEY MESSAGE As further insights have been gained into the various inflammatory cascades activated in immunological diseases, interesting insights have also been gained into the mechanism of action of IVIg. We are still far from discovering all the immunomodulatory mechanisms of IVIg.
Collapse
Affiliation(s)
- Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Geneva Center for Inflammation Research, Geneva, Switzerland
- Translational Research Centre in Onco-Haematology (CRTOH), Geneva, Switzerland
| | - Peter Jandus
- Division of Immunology and Allergology, University Hospitals and Medical Faculty, Geneva, Switzerland
| |
Collapse
|
3
|
Chen K, Hao Y, Guzmán M, Li G, Cerutti A. Antibody-mediated regulation of basophils: emerging views and clinical implications. Trends Immunol 2023; 44:408-423. [PMID: 37147229 PMCID: PMC10219851 DOI: 10.1016/j.it.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 05/07/2023]
Abstract
An increasing number of human diseases, including allergies, infections, inflammation, and cancer, involve roles for basophils. Traditionally viewed as the rarest leukocytes that are present only in the circulation, basophils have recently emerged as important players in systemic as well as tissue-specific immune responses. Their functions are regulated by immunoglobulins (Igs), and this enables basophils to integrate diverse adaptive and innate immunity signals. IgE is well known to regulate basophil responses in the context of type 2 immunity and allergic inflammation; however, growing evidence shows that IgG, IgA, and IgD also shape specific aspects of basophil functions relevant to many human diseases. We discuss recent mechanistic advances underpinning antibody-mediated basophil responses and propose strategies for the treatment of basophil-associated disorders.
Collapse
Affiliation(s)
- Kang Chen
- Departments of Obstetrics and Gynecology, Oncology, Biochemistry, and Microbiology and Immunology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Yujing Hao
- Departments of Obstetrics and Gynecology, Oncology, Biochemistry, and Microbiology and Immunology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mauricio Guzmán
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona Biomedical Research Park, Barcelona 08003, Spain
| | - Genxia Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Andrea Cerutti
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona Biomedical Research Park, Barcelona 08003, Spain; Marc and Jennifer Lipschultz Precision Immunology Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Catalan Institute for Research and Advanced Studies (ICREA), Barcelona Biomedical Research Park, Barcelona 08003, Spain.
| |
Collapse
|
4
|
Plattner K, Gharailoo Z, Zinkhan S, Engeroff P, Bachmann MF, Vogel M. IgE glycans promote anti-IgE IgG autoantibodies that facilitate IgE serum clearance via Fc Receptors. Front Immunol 2022; 13:1069100. [PMID: 36544773 PMCID: PMC9761184 DOI: 10.3389/fimmu.2022.1069100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Background Recent studies have shown that IgE glycosylation significantly impacts the ability of IgE to bind to its high-affinity receptor FcεRI and exert effector functions. We have recently demonstrated that immunizing mice with IgE in a complex with an allergen leads to a protective, glycan-dependent anti-IgE response. However, to what extent the glycans on IgE determine the induction of those antibodies and how they facilitate serum clearance is unclear.Therefore, we investigated the role of glycan-specific anti-IgE IgG autoantibodies in regulating serum IgE levels and preventing systemic anaphylaxis by passive immunization. Methods Mice were immunized using glycosylated or deglycosylated IgE-allergen-immune complexes (ICs) to induce anti-IgE IgG antibodies. The anti-IgE IgG antibodies were purified and used for passive immunization. Results Glycosylated IgE-ICs induced a significantly higher anti-IgE IgG response and more IgG-secreting plasma cells than deglycosylated IgE-ICs. Passive immunization of IgE-sensitized mice with purified anti-IgE IgG increased the clearance of IgE and prevented systemic anaphylaxis upon allergen challenge. Anti-IgE IgG purified from the serum of mice immunized with deglycosylated IgE-ICs, led to a significantly reduced elimination and protection, confirming that the IgE glycans themselves are the primary drivers of the protectivity induced by the IgE-immune complexes. Conclusion IgE glycosylation is essential for a robust anti-IgE IgG response and might be an important regulator of serum IgE levels.
Collapse
Affiliation(s)
- Kevin Plattner
- Department of Immunology, University Hospital for Rheumatology and Immunology, Bern, Switzerland,Department of Biomedical Research (DBMR), University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
| | - Zahra Gharailoo
- Department of Immunology, University Hospital for Rheumatology and Immunology, Bern, Switzerland,Department of Biomedical Research (DBMR), University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
| | - Simon Zinkhan
- Department of Immunology, University Hospital for Rheumatology and Immunology, Bern, Switzerland,Department of Biomedical Research (DBMR), University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
| | - Paul Engeroff
- Department of Immunology, University Hospital for Rheumatology and Immunology, Bern, Switzerland
| | - Martin F. Bachmann
- Department of Immunology, University Hospital for Rheumatology and Immunology, Bern, Switzerland,Department of Biomedical Research (DBMR), University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland,Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Monique Vogel
- Department of Immunology, University Hospital for Rheumatology and Immunology, Bern, Switzerland,Department of Biomedical Research (DBMR), University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland,*Correspondence: Monique Vogel,
| |
Collapse
|
5
|
Segú-Vergés C, Caño S, Calderón-Gómez E, Bartra H, Sardon T, Kaveri S, Terencio J. Systems biology and artificial intelligence analysis highlights the pleiotropic effect of IVIg therapy in autoimmune diseases with a predominant role on B cells and complement system. Front Immunol 2022; 13:901872. [PMID: 36248801 PMCID: PMC9563374 DOI: 10.3389/fimmu.2022.901872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/22/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Intravenous immunoglobulin (IVIg) is used as treatment for several autoimmune and inflammatory conditions, but its specific mechanisms are not fully understood. Herein, we aimed to evaluate, using systems biology and artificial intelligence techniques, the differences in the pathophysiological pathways of autoimmune and inflammatory conditions that show diverse responses to IVIg treatment. We also intended to determine the targets of IVIg involved in the best treatment response of the evaluated diseases. Our selection and classification of diseases was based on a previously published systematic review, and we performed the disease characterization through manual curation of the literature. Furthermore, we undertook the mechanistic evaluation with artificial neural networks and pathway enrichment analyses. A set of 26 diseases was selected, classified, and compared. Our results indicated that diseases clearly benefiting from IVIg treatment were mainly characterized by deregulated processes in B cells and the complement system. Indeed, our results show that proteins related to B-cell and complement system pathways, which are targeted by IVIg, are involved in the clinical response. In addition, targets related to other immune processes may also play an important role in the IVIg response, supporting its wide range of actions through several mechanisms. Although B-cell responses and complement system have a key role in diseases benefiting from IVIg, protein targets involved in such processes are not necessarily the same in those diseases. Therefore, IVIg appeared to have a pleiotropic effect that may involve the collaborative participation of several proteins. This broad spectrum of targets and 'non-specificity' of IVIg could be key to its efficacy in very different diseases.
Collapse
Affiliation(s)
| | - Silvia Caño
- Grifols Innovation and New Technologies (GIANT) Ltd., Dublin, Ireland
| | | | - Helena Bartra
- Health Department, Anaxomics Biotech, Barcelona, Spain
| | - Teresa Sardon
- Health Department, Anaxomics Biotech, Barcelona, Spain
| | - Srini Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - José Terencio
- Grifols Innovation and New Technologies (GIANT) Ltd., Dublin, Ireland
| |
Collapse
|
6
|
Abstract
It has been appreciated that basophilia is a common feature of helminth infections for approximately 50 years. The ability of basophils to secrete IL-4 and other type 2 cytokines has supported the prevailing notion that basophils contribute to antihelminth immunity by promoting optimal type 2 T helper (Th2) cell responses. While this appears to be the case in several helminth infections, emerging studies are also revealing that the effector functions of basophils are extremely diverse and parasite-specific. Further, new reports now suggest that basophils can restrict type 2 inflammation in a manner that preserves the integrity of helminth-affected tissue. Finally, exciting data has also demonstrated that basophils can regulate inflammation by participating in neuro-immune interactions. This article will review the current state of basophil biology and describe how recent studies are transforming our understanding of the role basophils play in the context of helminth infections.
Collapse
Affiliation(s)
- Jianya Peng
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Mark C Siracusa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
7
|
Miyake K, Shibata S, Yoshikawa S, Karasuyama H. Basophils and their effector molecules in allergic disorders. Allergy 2021; 76:1693-1706. [PMID: 33205439 DOI: 10.1111/all.14662] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/27/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022]
Abstract
Basophils are the rarest granulocytes which represent <1% of peripheral blood leukocytes. Basophils bear several phenotypic similarities to tissue-resident mast cells and therefore had been erroneously considered as blood-circulating mast cells. However, recent researches have revealed that basophils play nonredundant roles in allergic inflammation, protective immunity against parasitic infections and regulation of innate and acquired immunity. Basophils are recruited to inflamed tissues and activated in an IgE-dependent or IgE-independent manner to release a variety of effector molecules. Such molecules, including IL-4, act on various types of cells and play versatile roles, including the induction and termination of allergic inflammation and the regulation of immune responses. Recent development of novel therapeutic agents has enabled us to gain further insights into basophil biology in human disorders. In this review, we highlight the recent advances in the field of basophil biology with a particular focus on the role of basophils in allergic inflammation. Further studies on basophils and their effector molecules will help us identify novel therapeutic targets for treating allergic disorders.
Collapse
Affiliation(s)
- Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory TMDU Advanced Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Sho Shibata
- Department of Respiratory Medicine Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Soichiro Yoshikawa
- Department of Cell Physiology Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory TMDU Advanced Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| |
Collapse
|
8
|
Is there a Role of Intravenous Immunoglobulin in Immunologic Recurrent Pregnancy Loss? J Immunol Res 2020; 2020:6672865. [PMID: 33426092 PMCID: PMC7781684 DOI: 10.1155/2020/6672865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/04/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 01/01/2023] Open
Abstract
Recurrent pregnancy loss (RPL) commonly refers to three or more miscarriages that occur before 20 weeks of pregnancy. The immunological cause of RPL could be either an auto- or alloimmune-related event or both. Because of the discovery of immunological abnormalities in RPL patients in clinical practice, several immunomodulatory therapies were introduced to maintain the immune balance at the maternal-fetal interface. Intravenous immunoglobulin (IVIg) is one of the immunomodulators. In recent years, several studies have analyzed the therapeutic effect of IVIg on RPL patients with antiphospholipid syndrome (APS) or unexplained RPL. However, their results are controversial. IVIg can be used in RPL patients with APS who have previously failed in other treatments. It is recommended that IVIg infusion could be considered used before conception in RPL patients who have cellular immune abnormalities such as increased natural killer (NK) cell counts, NK cell cytotoxicity, or increased T helper (Th)1/Th2 ratio, depending on the cut-off values of each hospital. The aim of this review was to summarize the mechanisms, efficacy, pharmacokinetics, and side effects associated with passive immunization using IVIg in immunologic RPL, according to the literature published in recent years. We hope that more obstetricians will be able to understand the timing and indication of IVIg properly in immunologic RPL patients and effectively enhance pregnancy outcomes for mothers and neonates.
Collapse
|
9
|
Galeotti C, Karnam A, Das M, Kaveri SV, Bayry J. Acid Stripping of Surface IgE Antibodies Bound to FcεRI is Unsuitable for the Functional Assays that Require Long-Term Culture of Basophils and Entire Removal of Surface IgE. Int J Mol Sci 2020; 21:ijms21020510. [PMID: 31941161 PMCID: PMC7014331 DOI: 10.3390/ijms21020510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
Basophils are rare granulocytes and dysregulated functions of these cells are associated with several atopic and non-atopic allergic diseases of skin, respiratory system and gastrointestinal tract. Both cytokines and immunoglobulin E (IgE) are implicated in mediating the basophil activation and pathogenesis of these disorders. Several reports have shown that healthy individuals, and patients with allergic disorders display IgG autoantibodies to IgE and hence functional characterization of these anti-IgE IgG autoantibodies is critical. In general, anti-IgE IgG autoantibodies modulate basophil activation irrespective of allergen specificity by interacting with constant domains of IgE. Therefore, an ideal solution to prove the functions of such anti-IgE IgG autoantibodies would be to completely eliminate type I high affinity immunoglobulin E receptor (FcɛRI)-bound IgE from the surface of basophils and to demonstrate in an unequivocal manner the role of anti-IgE IgG autoantibodies. In line with previous reports, our data show that FcɛRI on peripheral blood basophils are almost saturated with IgE. Further, acetic acid buffer (pH 4) efficiently removes these FcɛRI-bound IgE. Although immediately following acetic acid-elution of IgE had no repercussion on the viability of basophils, following 24 h culture with interleukin-3 (IL-3), the viability and yield of basophils were drastically reduced in acid-treated cells and had repercussion on the induction of activation markers. Lactic acid treatment on the other hand though had no adverse effects on the viability of basophils and IL-3-induced activation, it removed only a small fraction of the cell surface bound IgE. Thus, our results show that acid buffers could be used for the elution of FcɛRI-bound IgE on the basophil surface for the biochemical characterization of IgE antibodies or for the immediate use of basophils to determine their sensitivity to undergo degranulation by specific allergens. However, these methods are not utile for the functional assays of basophils that require longer duration of culture and entire removal of surface IgE to validate the role of anti-IgE IgG autoantibodies that interact with FcɛRI-bound IgE irrespective of allergen specificity.
Collapse
Affiliation(s)
- Caroline Galeotti
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Paris, F-75006, France
- Service de Rhumatologie Pédiatrique, Centre de Référence des Maladies Auto-Inflammatoires Rares et des Amyloses, CHU de Bicêtre, le Kremlin Bicêtre, F-94270 Paris, France
| | - Anupama Karnam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Paris, F-75006, France
| | - Mrinmoy Das
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Paris, F-75006, France
| | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Paris, F-75006, France
- Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Paris, F-75006, France
- Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| |
Collapse
|