1
|
Pons-Fuster E, Bernal E, Guillamón CF, Gimeno L, Martínez-Sánchez MV, Ruiz-Lorente I, Campillo JA, Ceballos D, Torres A, Tomás C, Muñoz Á, Alcaraz A, Selma P, Ruiz-Nicolas C, Muro M, Minguela A. HLA-C*07 is associated with symptomatic HIV-1-associated neurocognitive disorders (HAND) and immune dysregulation. Infect Dis (Lond) 2024; 56:818-829. [PMID: 38743055 DOI: 10.1080/23744235.2024.2351047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND HIV-1-associated neurocognitive disorders (HAND) in stable patients undergoing antiretroviral therapy (ART) may result from ongoing immune dysregulation and chronic inflammation. A contributing factor may result from the unstable HLA class I allele, HLA-C*07. OBJECTIVE To assess the genetic profile of killer-cell immunoglobulin-like receptors (KIR), human leukocyte antigens (HLA), and immune activation or senescence markers and their association with HAND in stable HIV-1 patients receiving ART. METHODS An observational cross-sectional study was carried out with 96 patients with asymptomatic or symptomatic HAND. HLA and KIR as well as immune activation/senescence biomarkers in peripheral blood cells were assessed by SSO-Luminex typing and flow cytometry, respectively. RESULTS HLA-C*07 is associated with symptomatic HAND. The frequency of two copies of HLA-C*07 was higher in patients with symptomatic than with asymptomatic HAND (12.0 vs. 2.2%, ρ < 0.001). The percentage of senescent CD8+CD28- T-cells was higher in patients with two copies of HLA-C*07 (ρ < 0.05). In patients with symptomatic HAND, the percentages of non-senescent CD8+CD28+ T cells were inversely proportional to the number of copies of the HLA-C*07 (ρ < 0.05). CONCLUSION Patients with symptomatic HAND showed a higher frequency of the homozygotic unstable HLA-C*07 allotype, which could be associated with neurocognitive complications. Two copies of HLA-C*07 were associated with immune senescent T lymphocyte profiles characterized by the loss of CD28 expression.
Collapse
Affiliation(s)
- Eduardo Pons-Fuster
- Immunologyservice, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), Murcia, Spain
| | - Enrique Bernal
- Infectious Disease Unit, University Hospital Reina Sofía and Murcia University and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), Murcia, Spain
| | - Concepción F Guillamón
- Immunologyservice, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), Murcia, Spain
| | - Lourdes Gimeno
- Immunologyservice, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), Murcia, Spain
| | - María V Martínez-Sánchez
- Immunologyservice, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), Murcia, Spain
| | - Inmaculada Ruiz-Lorente
- Immunologyservice, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), Murcia, Spain
| | - José A Campillo
- Immunologyservice, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), Murcia, Spain
| | - Diana Ceballos
- Immunologyservice, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), Murcia, Spain
| | - Ana Torres
- Infectious Disease Unit, University Hospital Reina Sofía and Murcia University and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), Murcia, Spain
| | - Cristina Tomás
- Infectious Disease Unit, University Hospital Reina Sofía and Murcia University and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), Murcia, Spain
| | - Ángeles Muñoz
- Infectious Disease Unit, University Hospital Reina Sofía and Murcia University and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), Murcia, Spain
| | - Antonia Alcaraz
- Infectious Disease Unit, University Hospital Reina Sofía and Murcia University and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), Murcia, Spain
| | - Pedro Selma
- Infectious Disease Unit, University Hospital Reina Sofía and Murcia University and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), Murcia, Spain
| | - Carlos Ruiz-Nicolas
- Infectious Disease Unit, University Hospital Reina Sofía and Murcia University and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), Murcia, Spain
| | - Manuel Muro
- Immunologyservice, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), Murcia, Spain
| | - Alfredo Minguela
- Immunologyservice, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), Murcia, Spain
| |
Collapse
|
2
|
Wang Q, Chen S, Guo Z, Xia S, Zhang M. NK-like CD8 T cell: one potential evolutionary continuum between adaptive memory and innate immunity. Clin Exp Immunol 2024; 217:136-150. [PMID: 38651831 PMCID: PMC11239564 DOI: 10.1093/cei/uxae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
CD8 T cells are crucial adaptive immune cells with cytotoxicity to fight against pathogens or abnormal self-cells via major histocompatibility complex class I-dependent priming pathways. The composition of the memory CD8 T-cell pool is influenced by various factors. Physiological aging, chronic viral infection, and autoimmune diseases promote the accumulation of CD8 T cells with highly differentiated memory phenotypes. Accumulating studies have shown that some of these memory CD8 T cells also exhibit innate-like cytotoxicity and upregulate the expression of receptors associated with natural killer (NK) cells. Further analysis shows that these NK-like CD8 T cells have transcriptional profiles of both NK and CD8 T cells, suggesting the transformation of CD8 T cells into NK cells. However, the specific induction mechanism underlying NK-like transformation and the implications of this process for CD8 T cells are still unclear. This review aimed to deduce the possible differentiation model of NK-like CD8 T cells, summarize the functions of major NK-cell receptors expressed on these cells, and provide a new perspective for exploring the role of these CD8 T cells in health and disease.
Collapse
Affiliation(s)
- Qiulei Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shaodan Chen
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhenhong Guo
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Minghui Zhang
- School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Simpson J, Starke CE, Ortiz AM, Ransier A, Darko S, Llewellyn-Lacey S, Fennessey CM, Keele BF, Douek DC, Price DA, Brenchley JM. Immunotoxin-mediated depletion of Gag-specific CD8+ T cells undermines natural control of SIV. JCI Insight 2024; 9:e174168. [PMID: 38885329 PMCID: PMC11383179 DOI: 10.1172/jci.insight.174168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
Antibody-mediated depletion studies have demonstrated that CD8+ T cells are required for effective immune control of SIV. However, this approach is potentially confounded by several factors, including reactive CD4+ T cell proliferation, and provides no information on epitope specificity, a likely determinant of CD8+ T cell efficacy. We circumvented these limitations by selectively depleting CD8+ T cells specific for the Gag epitope CTPYDINQM (CM9) via the administration of immunotoxin-conjugated tetrameric complexes of CM9/Mamu-A*01. Immunotoxin administration effectively depleted circulating but not tissue-localized CM9-specific CD8+ T cells, akin to the bulk depletion pattern observed with antibodies directed against CD8. However, we found no evidence to indicate that circulating CM9-specific CD8+ T cells suppressed viral replication in Mamu-A*01+ rhesus macaques during acute or chronic progressive infection with a pathogenic strain of SIV. This observation extended to macaques with established infection during and after continuous antiretroviral therapy. In contrast, natural controller macaques experienced dramatic increases in plasma viremia after immunotoxin administration, highlighting the importance of CD8+ T cell-mediated immunity against CM9. Collectively, these data showed that CM9-specific CD8+ T cells were necessary but not sufficient for robust immune control of SIV in a nonhuman primate model and, more generally, validated an approach that could inform the design of next-generation vaccines against HIV-1.
Collapse
Affiliation(s)
- Jennifer Simpson
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Carly E Starke
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Amy Ransier
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Sam Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Seok J, Cho SD, Lee J, Choi Y, Kim SY, Lee SM, Kim SH, Jeong S, Jeon M, Lee H, Kim AR, Choi B, Ha SJ, Jung I, Yoon KJ, Park JE, Kim JH, Kim BJ, Shin EC, Park SH. A virtual memory CD8 + T cell-originated subset causes alopecia areata through innate-like cytotoxicity. Nat Immunol 2023; 24:1308-1317. [PMID: 37365384 DOI: 10.1038/s41590-023-01547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Virtual memory T (TVM) cells are a T cell subtype with a memory phenotype but no prior exposure to foreign antigen. Although TVM cells have antiviral and antibacterial functions, whether these cells can be pathogenic effectors of inflammatory disease is unclear. Here we identified a TVM cell-originated CD44super-high(s-hi)CD49dlo CD8+ T cell subset with features of tissue residency. These cells are transcriptionally, phenotypically and functionally distinct from conventional CD8+ TVM cells and can cause alopecia areata. Mechanistically, CD44s-hiCD49dlo CD8+ T cells could be induced from conventional TVM cells by interleukin (IL)-12, IL-15 and IL-18 stimulation. Pathogenic activity of CD44s-hiCD49dlo CD8+ T cells was mediated by NKG2D-dependent innate-like cytotoxicity, which was further augmented by IL-15 stimulation and triggered disease onset. Collectively, these data suggest an immunological mechanism through which TVM cells can cause chronic inflammatory disease by innate-like cytotoxicity.
Collapse
Affiliation(s)
- Joon Seok
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Sung-Dong Cho
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jeongsoo Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yunseo Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Su-Young Kim
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Sung-Min Lee
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sang-Hoon Kim
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Seongju Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Minwoo Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hoyoung Lee
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - A Reum Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Baekgyu Choi
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Inkyung Jung
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ki-Jun Yoon
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jong Hoon Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Beom Joon Kim
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
- The Center for Epidemic Preparedness, KAIST Institute, Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Wang YY, Zhen C, Hu W, Huang HH, Li YJ, Zhou MJ, Li J, Fu YL, Zhang P, Li XY, Yang T, Song JW, Fan X, Zou J, Meng SR, Qin YQ, Jiao YM, Xu R, Zhang JY, Zhou CB, Yuan JH, Huang L, Shi M, Cheng L, Wang FS, Zhang C. Elevated glutamate impedes anti-HIV-1 CD8 + T cell responses in HIV-1-infected individuals on antiretroviral therapy. Commun Biol 2023; 6:696. [PMID: 37419968 PMCID: PMC10328948 DOI: 10.1038/s42003-023-04975-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/24/2023] [Indexed: 07/09/2023] Open
Abstract
CD8 + T cells are essential for long-lasting HIV-1 control and have been harnessed to develop therapeutic and preventive approaches for people living with HIV-1 (PLWH). HIV-1 infection induces marked metabolic alterations. However, it is unclear whether these changes affect the anti-HIV function of CD8 + T cells. Here, we show that PLWH exhibit higher levels of plasma glutamate than healthy controls. In PLWH, glutamate levels positively correlate with HIV-1 reservoir and negatively correlate with the anti-HIV function of CD8 + T cells. Single-cell metabolic modeling reveals glutamate metabolism is surprisingly robust in virtual memory CD8 + T cells (TVM). We further confirmed that glutamate inhibits TVM cells function via the mTORC1 pathway in vitro. Our findings reveal an association between metabolic plasticity and CD8 + T cell-mediated HIV control, suggesting that glutamate metabolism can be exploited as a therapeutic target for the reversion of anti-HIV CD8 + T cell function in PLWH.
Collapse
Affiliation(s)
- You-Yuan Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Cheng Zhen
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Wei Hu
- Department of Emergency, Fifth Medical Center of Chinese PLA Hospital, Beijing, China
| | - Hui-Huang Huang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Jun Li
- Guangxi AIDS Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Ming-Ju Zhou
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jing Li
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yu-Long Fu
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Peng Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiao-Yu Li
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Tao Yang
- Medical School of Chinese PLA, Beijing, China
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Medical School of Chinese PLA, Beijing, China
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jun Zou
- Guangxi AIDS Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Si-Run Meng
- Guangxi AIDS Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Ya-Qin Qin
- Guangxi AIDS Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Yan-Mei Jiao
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruonan Xu
- Medical School of Chinese PLA, Beijing, China
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chun-Bao Zhou
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Hong Yuan
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lei Huang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming Shi
- Medical School of Chinese PLA, Beijing, China
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Liang Cheng
- Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Fu-Sheng Wang
- Medical School of Chinese PLA, Beijing, China.
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
- Guangxi AIDS Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China.
| | - Chao Zhang
- Medical School of Chinese PLA, Beijing, China.
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
- Guangxi AIDS Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China.
| |
Collapse
|
6
|
Zhou MJ, Zhang C, Fu YJ, Wang H, Ji Y, Huang X, Li L, Wang Y, Qing S, Shi Y, Shen L, Wang YY, Li XY, Li YY, Chen SY, Zhen C, Xu R, Shi M, Wang FS, Cheng Y. Cured HCV patients with suboptimal hepatitis B vaccine response exhibit high self-reactive immune signatures. Hepatol Commun 2023; 7:e00197. [PMID: 37378628 PMCID: PMC10309501 DOI: 10.1097/hc9.0000000000000197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/04/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND AND RATIONALE Chronic HCV infection induces lasting effects on the immune system despite viral clearance. It is unclear whether certain immune alterations are associated with vaccine responses in cured HCV patients. APPROACH Thirteen cured HCV patients received the standard 3-dose hepatitis B vaccine and were followed up at the 0, 1st, 6th, and 7th months (M0, M1, M6, and M7) after the first dose of vaccination. Thirty-three-color and 26-color spectral flow cytometry panels were used for high-dimensional immunophenotyping of the T-cell and B-cell subsets, respectively. RESULTS Compared to the healthy controls (HC), 17 of 43 (39.5%) immune cell subsets showed abnormal frequencies in cured HCV patients. Patients with cured HCV were further divided into high responders (HR, n = 6) and nonresponders (NR1, n = 7) based on the levels of hepatitis B surface antibodies at M1. Alterations in cell populations were more significant in NR1. Moreover, we found that high levels of self-reactive immune signatures, including Tregs, TD/CD8, IgD-only memory B, and autoantibodies, were associated with suboptimal hepatitis B vaccine responses. CONCLUSIONS Our data suggest that cured HCV patients exhibit persistent perturbations in the adaptive immune system, among which highly self-reactive immune signatures may contribute to a suboptimal hepatitis B vaccine response.
Collapse
Affiliation(s)
- Ming-Ju Zhou
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yuan-Jie Fu
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Haiyan Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yingjie Ji
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xia Huang
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lin Li
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ye Wang
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Song Qing
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yanze Shi
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lili Shen
- Bengbu Medical College, Bengbu, China
| | - You-Yuan Wang
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | | | - Yuan-Yuan Li
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Si-Yuan Chen
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Cheng Zhen
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruonan Xu
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming Shi
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yongqian Cheng
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| |
Collapse
|
7
|
Mora-Bitria L, Asquith B. Innate receptors modulating adaptive T cell responses: KIR-HLA interactions and T cell-mediated control of chronic viral infections. Immunogenetics 2023; 75:269-282. [PMID: 36719466 PMCID: PMC9887252 DOI: 10.1007/s00251-023-01293-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023]
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are mainly expressed on natural killer (NK) cells and are key regulators of innate immune responses. NK cells are the first responders in the face of infection and help promote placentation during pregnancy; the importance of KIRs in these NK-mediated processes is well-established. However, mounting evidence suggests that KIRs also have a prominent and long-lasting effect on the adaptive immune system. Here, we review the evidence for the impact of KIRs on T cell responses with a focus on the clinical significance of this interaction.
Collapse
Affiliation(s)
- Laura Mora-Bitria
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Becca Asquith
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
8
|
Bystander activation in memory and antigen-inexperienced memory-like CD8 T cells. Curr Opin Immunol 2023; 82:102299. [PMID: 36913776 DOI: 10.1016/j.coi.2023.102299] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/13/2023]
Abstract
Antigen-induced memory T cells undergo counterintuitive activation in an antigen-independent manner, which is called bystander response. Although it is well documented that memory CD8+ T cells produce IFNγ and upregulate the cytotoxic program upon the stimulation with inflammatory cytokines, there is only rare evidence that this provides an actual protection against pathogens in immunocompetent individuals. One of the reasons might be numerous antigen-inexperienced memory-like T cells that are also capable of the bystander response. Little is known about the bystander protection of memory and memory-like T cells and their redundancies with innate-like lymphocytes in humans because of the interspecies differences and the lack of controlled experiments. However, it has been proposed that IL-15/NKG2D-driven bystander activation of memory T cells drives protection or immunopathology in particular human diseases.
Collapse
|
9
|
Yuan R, Li L, Hu W, Zhuang K, Zhang E, Yan Y, Feng L, Chen X, Cao Q, Ke H, Gui X, Yang R. Characteristics of refined lymphocyte subsets changes in people living with HIV/AIDS during antiretroviral therapy period: An observation from Wuhan, China. Front Immunol 2023; 14:1089379. [PMID: 36845097 PMCID: PMC9948076 DOI: 10.3389/fimmu.2023.1089379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Background To analyze the changing characteristics of continuous monitoring of refined lymphocyte subsets in people living with HIV/AIDS (PLWHA) during ART period. Methods Refined lymphocyte subsets was continuously monitored using flow cytometry for 173 PLWHA, who were hospitalized in Zhongnan Hospital of Wuhan University from August 17, 2021 to September 14, 2022. The effect of ART status and duration of ART on changes of refined lymphocyte subsets were compared in different groups. Then, the levels of refined lymphocyte subsets in PLWHA treated for more than 10 years were compared to those of 1086 healthy individuals. Results In addition to conventional CD4+ T lymphocytes and CD4+/CD8+ ratio, gradually increasing in numbers of CD3+CD4+CD45RO cells, CD3+CD4+CD45RA cells, CD45RA+CD3+CD4+CD25+CD127low and CD45RO+CD3+CD4+CD25+CD127low cells were found with the increase of ART duration. The number of CD4+CD28+ cells and CD8+CD28+ cells were 174/ul and 233/ul at 6 months post-ART, which gradually increased to 616/ul and 461/ul after ART initiation more than 10 years. Moreover, in ART ≤ 6 months, 6 months-3years, 3-10 years and >10 years groups, the percentage of CD3+CD8+HLA-DR+/CD8 were 79.66%, 69.73%, 60.19% and 57.90%, respectively, and the differences between groups showed statistical significance (F=5.727, P=0.001). For those PLWHA with ART more than 10 years, the levels of CD4+ T lymphocytes, CD3+CD4+CD45RO cells, CD3+CD4+CD45RA cells, CD4+CD28+ cells and CD8+CD28+ cells can increase to levels similar to those of healthy control. However, for those PLWHA with ART more than 10 years, CD4+/CD8+ ratio was 0.86 ± 0.47, which was lower than that of healthy control (0.86 ± 0.47 vs 1.32 ± 0.59, t=3.611, P=0.003); absolute counts and percentage of CD3+CD8+HLA-DR+ cells were 547/ul and 57.90%, which were higher than those of healthy control(547/ul vs 135/ul, t=3.612, P=0.003; 57.90% vs 22.38%, t=6.959, P<0.001). Conclusion Persistent ART can gradually improve the immune status of PLWHA, which is manifested in the increase of lymphocytes, function recovery of lymphocytes and reduction of aberrant activation status of the immune system. After 10 years of standardized ART, most lymphocytes could return to levels of healthy persons, although it may take longer to complete recovery for CD4+/CD8+ ratio and CD3+CD8+HLA-DR+ cells.
Collapse
Affiliation(s)
- Rui Yuan
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ling Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenjia Hu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ke Zhuang
- Animal Biosafety Shelter Laboratory (ABSL)‐III Laboratory at the Center for Animal Experiment, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China
| | - Ejuan Zhang
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yajun Yan
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ling Feng
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoping Chen
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qian Cao
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hengning Ke
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xien Gui
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rongrong Yang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,*Correspondence: Rongrong Yang,
| |
Collapse
|
10
|
Hussain T, Nguyen A, Daunt C, Thiele D, Pang ES, Li J, Zaini A, O'Keeffe M, Zaph C, Harris NL, Quinn KM, La Gruta NL. Helminth Infection-Induced Increase in Virtual Memory CD8 T Cells Is Transient, Driven by IL-15, and Absent in Aged Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:297-309. [PMID: 36524995 DOI: 10.4049/jimmunol.2200316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/28/2022] [Indexed: 01/04/2023]
Abstract
CD8 virtual memory T (TVM) cells are Ag-naive CD8 T cells that have undergone partial differentiation in response to common γ-chain cytokines, particularly IL-15 and IL-4. TVM cells from young individuals are highly proliferative in response to TCR and cytokine stimulation but, with age, they lose TCR-mediated proliferative capacity and exhibit hallmarks of senescence. Helminth infection can drive an increase in TVM cells, which is associated with improved pathogen clearance during subsequent infectious challenge in young mice. Given the cytokine-dependent profile of TVM cells and their age-associated dysfunction, we traced proliferative and functional changes in TVM cells, compared with true naive CD8 T cells, after helminth infection of young and aged C57BL/6 mice. We show that IL-15 is essential for the helminth-induced increase in TVM cells, which is driven only by proliferation of existing TVM cells, with negligible contribution from true naive cell differentiation. Additionally, TVM cells showed the greatest proliferation in response to helminth infection and IL-15 compared with other CD8 T cells. Furthermore, TVM cells from aged mice did not undergo expansion after helminth infection due to both TVM cell-intrinsic and -extrinsic changes associated with aging.
Collapse
Affiliation(s)
- Tabinda Hussain
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Angela Nguyen
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Carmel Daunt
- Laboratory of Intestinal Immunology, Department of Immunology and Pathology, Central Clinical School, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | - Daniel Thiele
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ee Shan Pang
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jasmine Li
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.,Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia; and
| | - Aidil Zaini
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Meredith O'Keeffe
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Colby Zaph
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Nicola L Harris
- Laboratory of Intestinal Immunology, Department of Immunology and Pathology, Central Clinical School, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | - Kylie M Quinn
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Nicole L La Gruta
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
11
|
Seok J, Cho SD, Seo SJ, Park SH. Roles of Virtual Memory T Cells in Diseases. Immune Netw 2023; 23:e11. [PMID: 36911806 PMCID: PMC9995991 DOI: 10.4110/in.2023.23.e11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 03/07/2023] Open
Abstract
Memory T cells that mediate fast and effective protection against reinfections are usually generated upon recognition on foreign Ags. However, a "memory-like" T-cell population, termed virtual memory T (TVM) cells that acquire a memory phenotype in the absence of foreign Ag, has been reported. Although, like innate cells, TVM cells reportedly play a role in first-line defense to bacterial or viral infections, their protective or pathological roles in immune-related diseases are largely unknown. In this review, we discuss the current understanding of TVM cells, focusing on their distinct characteristics, immunological properties, and roles in various immune-related diseases, such as infections and cancers.
Collapse
Affiliation(s)
- Joon Seok
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Sung-Dong Cho
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- The Center for Epidemic Preparedness, KAIST Institute, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
12
|
Sparks R, Lau WW, Liu C, Han KL, Vrindten KL, Sun G, Cox M, Andrews SF, Bansal N, Failla LE, Manischewitz J, Grubbs G, King LR, Koroleva G, Leimenstoll S, Snow L, Chen J, Tang J, Mukherjee A, Sellers BA, Apps R, McDermott AB, Martins AJ, Bloch EM, Golding H, Khurana S, Tsang JS. Influenza vaccination reveals sex dimorphic imprints of prior mild COVID-19. Nature 2023; 614:752-761. [PMID: 36599369 PMCID: PMC10481789 DOI: 10.1038/s41586-022-05670-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023]
Abstract
Acute viral infections can have durable functional impacts on the immune system long after recovery, but how they affect homeostatic immune states and responses to future perturbations remain poorly understood1-4. Here we use systems immunology approaches, including longitudinal multimodal single-cell analysis (surface proteins, transcriptome and V(D)J sequences) to comparatively assess baseline immune statuses and responses to influenza vaccination in 33 healthy individuals after recovery from mild, non-hospitalized COVID-19 (mean, 151 days after diagnosis) and 40 age- and sex-matched control individuals who had never had COVID-19. At the baseline and independent of time after COVID-19, recoverees had elevated T cell activation signatures and lower expression of innate immune genes including Toll-like receptors in monocytes. Male individuals who had recovered from COVID-19 had coordinately higher innate, influenza-specific plasmablast, and antibody responses after vaccination compared with healthy male individuals and female individuals who had recovered from COVID-19, in part because male recoverees had monocytes with higher IL-15 responses early after vaccination coupled with elevated prevaccination frequencies of 'virtual memory'-like CD8+ T cells poised to produce more IFNγ after IL-15 stimulation. Moreover, the expression of the repressed innate immune genes in monocytes increased by day 1 to day 28 after vaccination in recoverees, therefore moving towards the prevaccination baseline of the healthy control individuals. By contrast, these genes decreased on day 1 and returned to the baseline by day 28 in the control individuals. Our study reveals sex-dimorphic effects of previous mild COVID-19 and suggests that viral infections in humans can establish new immunological set-points that affect future immune responses in an antigen-agnostic manner.
Collapse
Affiliation(s)
- Rachel Sparks
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - William W Lau
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Can Liu
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
- Graduate Program in Biological Sciences, University of Maryland, College Park, MD, USA
| | - Kyu Lee Han
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Kiera L Vrindten
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Guangping Sun
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
- Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Milann Cox
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | | | - Neha Bansal
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Laura E Failla
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Jody Manischewitz
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, USA
| | - Gabrielle Grubbs
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, USA
| | - Lisa R King
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, USA
| | - Galina Koroleva
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | | | - LaQuita Snow
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
- Johns Hopkins University, Baltimore, MD, USA
| | - Jinguo Chen
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Juanjie Tang
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, USA
| | | | - Brian A Sellers
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Richard Apps
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | | | - Andrew J Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, USA
| | - John S Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA.
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA.
- Yale Center for Systems and Engineering Immunology and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
13
|
Viano ME, Baez NS, Savid-Frontera C, Lidon NL, Hodge DL, Herbelin A, Gombert JM, Barbarin A, Rodriguez-Galan MC. Virtual Memory CD8 + T Cells: Origin and Beyond. J Interferon Cytokine Res 2022; 42:624-642. [PMID: 36083273 PMCID: PMC9835308 DOI: 10.1089/jir.2022.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/19/2022] [Indexed: 01/21/2023] Open
Abstract
The presence of CD8+ T cells with a memory phenotype in nonimmunized mice has been noted for decades, but it was not until about 2 decades ago that they began to be studied in greater depth. Currently called virtual memory CD8+ T cells, they consist of a heterogeneous group of cells with memory characteristics, without any previous contact with their specific antigens. These cells were identified in mice, but a few years ago, a cell type with characteristics equivalent to the murine ones was described in healthy humans. In this review, we address the different aspects of its biology mainly developed in murine models and what is currently known about its cellular equivalent in humans.
Collapse
Affiliation(s)
- Maria Estefania Viano
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia Soledad Baez
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Savid-Frontera
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolás Leonel Lidon
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - André Herbelin
- Inserm U1313, Poitiers, France
- Université de Poitiers, Poitiers, France
| | - Jean-Marc Gombert
- Inserm U1313, Poitiers, France
- Université de Poitiers, Poitiers, France
- Service d'Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| | - Alice Barbarin
- Inserm U1313, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | | |
Collapse
|
14
|
Pieren DKJ, Boer MC, de Wit J. The adaptive immune system in early life: The shift makes it count. Front Immunol 2022; 13:1031924. [PMID: 36466865 PMCID: PMC9712958 DOI: 10.3389/fimmu.2022.1031924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 10/13/2023] Open
Abstract
Respiratory infectious diseases encountered early in life may result in life-threatening disease in neonates, which is primarily explained by the relatively naive neonatal immune system. Whereas vaccines are not readily available for all infectious diseases, vaccinations have greatly reduced childhood mortality. However, repeated vaccinations are required to reach protective immunity in infants and not all vaccinations are effective at young age. Moreover, protective adaptive immunity elicited by vaccination wanes more rapidly at young age compared to adulthood. The infant adaptive immune system has previously been considered immature but this paradigm has changed during the past years. Recent evidence shows that the early life adaptive immune system is equipped with a strong innate-like effector function to eliminate acute pathogenic threats. These strong innate-like effector capacities are in turn kept in check by a tolerogenic counterpart of the adaptive system that may have evolved to maintain balance and to reduce collateral damage. In this review, we provide insight into these aspects of the early life's adaptive immune system by addressing recent literature. Moreover, we speculate that this shift from innate-like and tolerogenic adaptive immune features towards formation of immune memory may underlie different efficacy of infant vaccination in these different phases of immune development. Therefore, presence of innate-like and tolerogenic features of the adaptive immune system may be used as a biomarker to improve vaccination strategies against respiratory and other infections in early life.
Collapse
Affiliation(s)
| | | | - Jelle de Wit
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
15
|
Wang YY, Hu W, Wang FS, Zhang C. Revisiting the role of human memory CD8+ T cells in immune surveillance. Cell Mol Immunol 2022; 19:1319-1321. [PMID: 35922545 PMCID: PMC9622901 DOI: 10.1038/s41423-022-00900-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 01/27/2023] Open
Affiliation(s)
- You-Yuan Wang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Wei Hu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
| | - Chao Zhang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
| |
Collapse
|
16
|
van Eekeren LE, Matzaraki V, Zhang Z, van de Wijer L, Blaauw MJT, de Jonge MI, Vandekerckhove L, Trypsteen W, Joosten LAB, Netea MG, de Mast Q, Koenen HJPM, Li Y, van der Ven AJAM. People with HIV have higher percentages of circulating CCR5+ CD8+ T cells and lower percentages of CCR5+ regulatory T cells. Sci Rep 2022; 12:11425. [PMID: 35794176 PMCID: PMC9259737 DOI: 10.1038/s41598-022-15646-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/27/2022] [Indexed: 11/14/2022] Open
Abstract
CCR5 is the main HIV co-receptor. We aimed to (1) compare CCR5 expression on immune cells between people living with HIV (PLHIV) using combination antiretroviral therapy (cART) and HIV-uninfected controls, (2) relate CCR5 expression to viral reservoir size and (3) assess determinants of CCR5 expression. This cross-sectional study included 209 PLHIV and 323 controls. Percentages of CCR5+ cells (%) and CCR5 mean fluorescence intensity assessed by flow cytometry in monocytes and lymphocyte subsets were correlated to host factors, HIV-1 cell-associated (CA)-RNA and CA-DNA, plasma inflammation markers and metabolites. Metabolic pathways were identified. PLHIV displayed higher percentages of CCR5+ monocytes and several CD8+ T cell subsets, but lower percentages of CCR5+ naive CD4+ T cells and regulatory T cells (Tregs). HIV-1 CA-DNA and CA-RNA correlated positively with percentages of CCR5+ lymphocytes. Metabolome analysis revealed three pathways involved in energy metabolism associated with percentage of CCR5+ CD8+ T cells in PLHIV. Our results indicate that CCR5 is differently expressed on various circulating immune cells in PLHIV. Hence, cell-trafficking of CD8+ T cells and Tregs may be altered in PLHIV. Associations between energy pathways and percentage of CCR5+ CD8+ T cells in PLHIV suggest higher energy demand of these cells in PLHIV.
Collapse
Affiliation(s)
- Louise E van Eekeren
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands. .,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands. .,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Vasiliki Matzaraki
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zhenhua Zhang
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisa van de Wijer
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marc J T Blaauw
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marien I de Jonge
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine, and Pediatrics, Ghent University & Ghent University Hospital, Ghent, Belgium
| | - Wim Trypsteen
- HIV Cure Research Center, Department of Internal Medicine, and Pediatrics, Ghent University & Ghent University Hospital, Ghent, Belgium
| | - Leo A B Joosten
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Quirijn de Mast
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yang Li
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - André J A M van der Ven
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Hu W, Li YJ, Zhen C, Wang YY, Huang HH, Zou J, Zheng YQ, Huang GC, Meng SR, Jin JH, Li J, Zhou MJ, Fu YL, Zhang P, Li XY, Yang T, Wang XW, Yang XH, Song JW, Fan X, Jiao YM, Xu RN, Zhang JY, Zhou CB, Yuan JH, Huang L, Qin YQ, Wu FY, Shi M, Wang FS, Zhang C. CCL5-Secreting Virtual Memory CD8+ T Cells Inversely Associate With Viral Reservoir Size in HIV-1-Infected Individuals on Antiretroviral Therapy. Front Immunol 2022; 13:897569. [PMID: 35720272 PMCID: PMC9204588 DOI: 10.3389/fimmu.2022.897569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/21/2022] [Indexed: 12/25/2022] Open
Abstract
Recent studies highlighted that CD8+ T cells are necessary for restraining reservoir in HIV-1-infected individuals who undergo antiretroviral therapy (ART), whereas the underlying cellular and molecular mechanisms remain largely unknown. Here, we enrolled 60 virologically suppressed HIV-1-infected individuals, to assess the correlations of the effector molecules and phenotypic subsets of CD8+ T cells with HIV-1 DNA and cell-associated unspliced RNA (CA usRNA). We found that the levels of HIV-1 DNA and usRNA correlated positively with the percentage of CCL4+CCL5- CD8+ central memory cells (TCM) while negatively with CCL4-CCL5+ CD8+ terminally differentiated effector memory cells (TEMRA). Moreover, a virtual memory CD8+ T cell (TVM) subset was enriched in CCL4-CCL5+ TEMRA cells and phenotypically distinctive from CCL4+ TCM subset, supported by single-cell RNA-Seq data. Specifically, TVM cells showed superior cytotoxicity potentially driven by T-bet and RUNX3, while CCL4+ TCM subset displayed a suppressive phenotype dominated by JUNB and CREM. In viral inhibition assays, TVM cells inhibited HIV-1 reactivation more effectively than non-TVM CD8+ T cells, which was dependent on CCL5 secretion. Our study highlights CCL5-secreting TVM cells subset as a potential determinant of HIV-1 reservoir size. This might be helpful to design CD8+ T cell-based therapeutic strategies for cure of the disease.
Collapse
Affiliation(s)
- Wei Hu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Jun Li
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Cheng Zhen
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - You-Yuan Wang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Hui-Huang Huang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jun Zou
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Yan-Qing Zheng
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Gui-Chan Huang
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Si-Run Meng
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Jie-Hua Jin
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jing Li
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming-Ju Zhou
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yu-Long Fu
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Peng Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiao-Yu Li
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Tao Yang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiu-Wen Wang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiu-Han Yang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruo-Nan Xu
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chun-Bao Zhou
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Hong Yuan
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lei Huang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ya-Qin Qin
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Feng-Yao Wu
- Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Ming Shi
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.,Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Chao Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.,Guangxi Acquired Immune Deficiency Syndrome (AIDS) Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| |
Collapse
|
18
|
Yu L, Guan Y, Li L, Lu N, Zhang C. The transcription factor Eomes promotes expression of inhibitory receptors on hepatic CD8
+
T cells during HBV persistence. FEBS J 2022; 289:3241-3261. [DOI: 10.1111/febs.16342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/11/2021] [Accepted: 01/04/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Linyan Yu
- Institute of Immunopharmaceutical Sciences School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan China
| | - Yun Guan
- Institute of Immunopharmaceutical Sciences School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan China
- Jining NO. 1 People’s Hospital China
| | - Lei Li
- Institute of Immunopharmaceutical Sciences School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan China
| | - Nan Lu
- Institute of Diagnostics School of Medicine Cheeloo College of Medicine Shandong University Jinan China
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan China
| |
Collapse
|
19
|
Espinar-Buitrago M, Muñoz-Fernández MA. New Approaches to Dendritic Cell-Based Therapeutic Vaccines Against HIV-1 Infection. Front Immunol 2022; 12:719664. [PMID: 35058917 PMCID: PMC8763680 DOI: 10.3389/fimmu.2021.719664] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Due to the success of combined antiretroviral therapy (cART) in recent years, the pathological outcome of Human Immunodeficiency Virus type 1 (HIV-1) infection has improved substantially, achieving undetectable viral loads in most cases. Nevertheless, the presence of a viral reservoir formed by latently infected cells results in patients having to maintain treatment for life. In the absence of effective eradication strategies against HIV-1, research efforts are focused on obtaining a cure. One of these approaches is the creation of therapeutic vaccines. In this sense, the most promising one up to now is based on the establishing of the immunological synapse between dendritic cells (DCs) and T lymphocytes (TL). DCs are one of the first cells of the immune system to encounter HIV-1 by acting as antigen presenting cells, bringing about the interaction between innate and adaptive immune responses mediated by TL. Furthermore, TL are the end effector, and their response capacity is essential in the adaptive elimination of cells infected by pathogens. In this review, we summarize the knowledge of the interaction between DCs with TL, as well as the characterization of the specific T-cell response against HIV-1 infection. The use of nanotechnology in the design and improvement of vaccines based on DCs has been researched and presented here with a special emphasis.
Collapse
Affiliation(s)
- Marisierra Espinar-Buitrago
- Section Head Immunology, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Ma Angeles Muñoz-Fernández
- Section Head Immunology, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Spanish Human Immunodeficiency Virus- Hospital Gregorio Marañón (HIV-HGM) BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
20
|
Kwesi-Maliepaard EM, Jacobs H, van Leeuwen F. Signals for antigen-independent differentiation of memory CD8 + T cells. Cell Mol Life Sci 2021; 78:6395-6408. [PMID: 34398252 PMCID: PMC8558200 DOI: 10.1007/s00018-021-03912-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/18/2022]
Abstract
Conventional CD8+ memory T cells develop upon stimulation with foreign antigen and provide increased protection upon re-challenge. Over the past two decades, new subsets of CD8+ T cells have been identified that acquire memory features independently of antigen exposure. These antigen-inexperienced memory T cells (TAIM) are described under several names including innate memory, virtual memory, and memory phenotype. TAIM cells exhibit characteristics of conventional or true memory cells, including antigen-specific responses. In addition, they show responsiveness to innate stimuli and have been suggested to provide additional levels of protection toward infections and cancer. Here, we discuss the current understanding of TAIM cells, focusing on extrinsic and intrinsic molecular conditions that favor their development, their molecular definitions and immunological properties, as well as their transcriptional and epigenetic regulation.
Collapse
Affiliation(s)
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands.
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Méndez-Lagares G, Chin N, Chang WW, Lee J, Rosás-Umbert M, Kieu HT, Merriam D, Lu W, Kim S, Adamson L, Brander C, Luciw PA, Barry PA, Hartigan-O’Connor DJ. Cytomegalovirus mediates expansion of IL-15-responsive innate-memory cells with SIV killing function. J Clin Invest 2021; 131:148542. [PMID: 34153005 PMCID: PMC8321572 DOI: 10.1172/jci148542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Interindividual immune variability is driven predominantly by environmental factors, including exposure to chronic infectious agents such as cytomegalovirus (CMV). We investigated the effects of rhesus CMV (RhCMV) on composition and function of the immune system in young macaques. Within months of infection, RhCMV was associated with impressive changes in antigen presenting cells, T cells, and NK cells-and marked expansion of innate-memory CD8+ T cells. These cells express high levels of NKG2A/C and the IL-2 and IL-15 receptor beta chain, CD122. IL-15 was sufficient to drive differentiation of the cells in vitro and in vivo. Expanded NKG2A/C+CD122+CD8+ T cells in RhCMV-infected macaques, but not their NKG2-negative counterparts, were endowed with cytotoxicity against class I-deficient K562 targets and prompt IFN-γ production in response to stimulation with IL-12 and IL-18. Because RhCMV clone 68-1 forms the viral backbone of RhCMV-vectored SIV vaccines, we also investigated immune changes following administration of RhCMV 68-1-vectored SIV vaccines. These vaccines led to impressive expansion of NKG2A/C+CD8+ T cells with capacity to inhibit SIV replication ex vivo. Thus, CMV infection and CMV-vectored vaccination drive expansion of functional innate-like CD8 cells via host IL-15 production, suggesting that innate-memory expansion could be achieved by other vaccine platforms expressing IL-15.
Collapse
Affiliation(s)
- Gema Méndez-Lagares
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - Ning Chin
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - W.L. William Chang
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - Jaewon Lee
- Graduate Group in Immunology, and
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
| | | | - Hung T. Kieu
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - David Merriam
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - Wenze Lu
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - Sungjin Kim
- Department of Medical Microbiology and Immunology
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
| | - Lourdes Adamson
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
| | - Christian Brander
- IrsiCaixa - AIDS Research Institute, Badalona, Barcelona, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Paul A. Luciw
- California National Primate Research Center
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
- Department of Pathology and Laboratory Medicine, University of California, Davis, California, USA
| | - Peter A. Barry
- California National Primate Research Center
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
- Department of Pathology and Laboratory Medicine, University of California, Davis, California, USA
| | - Dennis J. Hartigan-O’Connor
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
22
|
Daniel L, Tassery M, Lateur C, Thierry A, Herbelin A, Gombert JM, Barbarin A. Allotransplantation Is Associated With Exacerbation of CD8 T-Cell Senescence: The Particular Place of the Innate CD8 T-Cell Component. Front Immunol 2021; 12:674016. [PMID: 34367138 PMCID: PMC8334557 DOI: 10.3389/fimmu.2021.674016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022] Open
Abstract
Immunosenescence is a physiological process that is associated with changes in the immune system, particularly among CD8 T-cells. Recent studies have hypothesized that senescent CD8 T-cells are produced with chronologic age by chronic stimulation, leading to the acquisition of hallmarks of innate-like T-cells. While conventional CD8 T-cells are quite well characterized, CD8 T-cells sharing features of NK cells and memory CD8 T-cells, are a newly described immune cell population. They can be distinguished from conventional CD8 T-cells by their combined expression of panKIR/NKG2A and Eomesodermin (E), a unique phenotype closely associated with IFN-γ production in response to innate stimulation. Here, we first provided new evidence in favor of the innate character of panKIR/NKG2A(+) E(+) CD8 T-cells in normal subjects, documenting their position at an intermediate level in the innateness gradient in terms of both innate IFN-γ production and diminished mitochondrial mass. We also revealed that CD8 E(+) panKIR/NKG2A(+) T-cells, hereafter referred to as Innate E(+) CD8 T-cells, exhibit increased senescent (CD27(-) CD28(-)) phenotype, compared to their conventional memory counterparts. Surprisingly, this phenomenon was not dependent on age. Given that inflammation related to chronic viral infection is known to induce NK-like marker expression and a senescence phenotype among CD8 T-cells, we hypothesized that innate E(+) CD8 T-cells will be preferentially associated with exacerbated cellular senescence in response to chronic alloantigen exposure or CMV infection. Accordingly, in a pilot cohort of stable kidney allotransplant recipients, we observed an increased frequency of the Innate E(+) CD8 T-cell subset, together with an exacerbated senescent phenotype. Importantly, this phenotype cannot be explained by age alone, in clear contrast to their conventional memory counterparts. The senescent phenotype in CD8 T-cells was further increased in cytomegalovirus (CMV) positive serology transplant recipients, suggesting that transplantation and CMV, rather than aging by itself, may promote an exacerbated senescent phenotype of innate CD8 T-cells. In conclusion, we proposed that kidney transplantation, via the setting of inflammatory stimuli of alloantigen exposure and CMV infection, may exogenously age the CD8 T-cell compartment, especially its innate component. The physiopathological consequences of this change in the immune system remain to be elucidated.
Collapse
Affiliation(s)
- Lauren Daniel
- Inserm U1082, Poitiers, France.,Université de Poitiers, Poitiers, France
| | - Marion Tassery
- Service de Néphrologie, Hémodialyse et Transplantation, CHU de Poitiers, Poitiers, France
| | - Clara Lateur
- Service d'Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| | - Antoine Thierry
- Inserm U1082, Poitiers, France.,Université de Poitiers, Poitiers, France.,Service de Néphrologie, Hémodialyse et Transplantation, CHU de Poitiers, Poitiers, France
| | - André Herbelin
- Inserm U1082, Poitiers, France.,Université de Poitiers, Poitiers, France
| | - Jean-Marc Gombert
- Inserm U1082, Poitiers, France.,Université de Poitiers, Poitiers, France.,Service d'Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| | - Alice Barbarin
- Inserm U1082, Poitiers, France.,CHU de Poitiers, Poitiers, France
| |
Collapse
|
23
|
Li J, Huang HH, Tu B, Zhou MJ, Hu W, Fu YL, Li XY, Yang T, Song JW, Fan X, Jiao YM, Xu RN, Zhang JY, Zhou CB, Yuan JH, Zhen C, Shi M, Wang FS, Zhang C. Reversal of the CD8 + T-Cell Exhaustion Induced by Chronic HIV-1 Infection Through Combined Blockade of the Adenosine and PD-1 Pathways. Front Immunol 2021; 12:687296. [PMID: 34177939 PMCID: PMC8222537 DOI: 10.3389/fimmu.2021.687296] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
Background Targeting immune checkpoints for HIV treatment potentially provides a double benefit resulting from the ability to restore viral-specific CD8+ T-cell functions and enhance HIV production from reservoir cells. Despite promising pre-clinical data, PD-1 blockade alone in HIV-1-infected patients with advanced cancer has shown limited benefits in controlling HIV, suggesting the need for additional targets beyond PD-1. CD39 and PD-1 are highly co-expressed on CD8+ T cells in HIV-1 infection. However, the characteristics of CD39 and PD-1 dual-positive CD8+ T-cell subsets in chronic HIV-1 infection remain poorly understood. Methods This study enrolled 72 HIV-1-infected patients, including 40 treatment naïve and 32 ART patients. A total of 11 healthy individuals were included as controls. Different subsets of CD8+ T cells defined by CD39 and/or PD-1 expression were studied by flow cytometry. The relationships between the frequencies of the different subsets and parameters indicating HIV-1 disease progression were analyzed. Functional (i.e., cytokine secretion, viral inhibition) assays were performed to evaluate the impact of the blockade of adenosine and/or PD-1 signaling on CD8+ T cells. Results The proportions of PD-1+, CD39+, and PD-1+CD39+ CD8+ T cells were significantly increased in treatment naïve patients but were partially lowered in patients on antiretroviral therapy. In treatment naïve patients, the proportions of PD-1+CD39+ CD8+ T cells were negatively correlated with CD4+ T-cell counts and the CD4/CD8 ratio, and were positively correlated with viral load. CD39+CD8+ T cells expressed high levels of the A2A adenosine receptor and were more sensitive to 2-chloroadenosine-mediated functional inhibition than their CD39- counterparts. In vitro, a combination of blocking CD39/adenosine and PD-1 signaling showed a synergic effect in restoring CD8+ T-cell function, as evidenced by enhanced abilities to secrete functional cytokines and to kill autologous reservoir cells. Conclusion In patients with chronic HIV-1 infection there are increased frequencies of PD-1+, CD39+, and PD-1+CD39+ CD8+ T cells. In treatment naïve patients, the frequencies of PD-1+CD39+ CD8+ T cells are negatively correlated with CD4+ T-cell counts and the CD4/CD8 ratio and positively correlated with viral load. Combined blockade of CD39/adenosine and PD-1 signaling in vitro may exert a synergistic effect in restoring CD8+ T-cell function in HIV-1-infected patients.
Collapse
Affiliation(s)
- Jing Li
- Peking University 302 Clinical Medical School, Beijing, China.,Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Hui-Huang Huang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Bo Tu
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming-Ju Zhou
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Wei Hu
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Yu-Long Fu
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yu Li
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.,Bengbu Medical University, Bengbu, China
| | - Tao Yang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Jin-Wen Song
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruo-Nan Xu
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chun-Bao Zhou
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Hong Yuan
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Cheng Zhen
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming Shi
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Peking University 302 Clinical Medical School, Beijing, China.,Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| |
Collapse
|
24
|
Prasad M, Wojciech L, Brzostek J, Hu J, Chua YL, Tung DWH, Yap J, Rybakin V, Gascoigne NRJ. Expansion of an Unusual Virtual Memory CD8 + Subpopulation Bearing Vα3.2 TCR in Themis-Deficient Mice. Front Immunol 2021; 12:644483. [PMID: 33897691 PMCID: PMC8058184 DOI: 10.3389/fimmu.2021.644483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/19/2021] [Indexed: 11/23/2022] Open
Abstract
Deletion of the gene for Themis affects T cell selection in the thymus, which would be expected to affect the TCR repertoire. We found an increased proportion of cells expressing Vα3.2 (TRAV9N-3) in the peripheral CD8+ T cell population in mice with germline Themis deficiency. Analysis of the TCRα repertoire indicated it was generally reduced in diversity in the absence of Themis, whereas the diversity of sequences using the TRAV9N-3 V-region element was increased. In wild type mice, Vα3.2+ cells showed higher CD5, CD6 and CD44 expression than non-Vα3-expressing cells, and this was more marked in cells from Themis-deficient mice. This suggested a virtual memory phenotype, as well as a stronger response to self-pMHC. The Vα3.2+ cells responded more strongly to IL-15, as well as showing bystander effector capability in a Listeria infection. Thus, the unusually large population of Vα3.2+ CD8+ T cells found in the periphery of Themis-deficient mice reflects not only altered thymic selection, but also allowed identification of a subset of bystander-competent cells that are also present in wild-type mice.
Collapse
Affiliation(s)
- Mukul Prasad
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lukasz Wojciech
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joanna Brzostek
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Jianfang Hu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Yen Leong Chua
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Desmond Wai Hon Tung
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jiawei Yap
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vasily Rybakin
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Nicholas R J Gascoigne
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
25
|
Thiele D, La Gruta NL, Nguyen A, Hussain T. Hiding in Plain Sight: Virtually Unrecognizable Memory Phenotype CD8 + T cells. Int J Mol Sci 2020; 21:ijms21228626. [PMID: 33207648 PMCID: PMC7698292 DOI: 10.3390/ijms21228626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Virtual memory T (TVM) cells are a recently described population of conventional CD8+ T cells that, in spite of their antigen inexperience, express markers of T cell activation. TVM cells exhibit rapid responsiveness to both antigen-specific and innate stimuli in youth but acquire intrinsic antigen-specific response defects in the elderly. In this article, we review how the identification of TVM cells necessitates a re-evaluation of accepted paradigms for conventional memory T (TMEM) cells, the potential for heterogeneity within the TVM population, and the defining characteristics of TVM cells. Further, we highlight recent literature documenting the development of TVM cells as a distinct CD8+ T cell lineage as well their biological significance in the context of disease.
Collapse
|
26
|
Rolot M, Dewals BG. Unconventional CD45RA+ memory CD8 T cells to control HIV infection during antiretroviral therapy. Cell Mol Immunol 2020; 17:897-898. [PMID: 32503999 PMCID: PMC7608230 DOI: 10.1038/s41423-020-0478-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/03/2022] Open
Affiliation(s)
- Marion Rolot
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 900953, USA
| | - Benjamin G Dewals
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine-FARAH, University of Liège, Liège, Belgium.
| |
Collapse
|