1
|
Gongpan P, Xu T, Zhang Y, Ji K, Kong L, Wang X, Chen H, Song Q, Sun Y, Geng CA, Li J. Apigenin alleviates inflammation as a natural IRAK4 inhibitor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156519. [PMID: 40015172 DOI: 10.1016/j.phymed.2025.156519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/25/2025] [Accepted: 02/15/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Uncontrolled inflammation is a key factor in the development of many diseases, and targeting pivotal kinases involved in the inflammatory response, such as interleukin-1 receptor-associated kinase 4 (IRAK4), holds promise for the treatment of inflammatory conditions. Apigenin (Api) is a popular element in numerous plants, possessing anti-inflammatory properties. Many studies have shown that Api modulates NF-κB signaling and MAPK cascade to reduce inflammation, but the exact mechanisms by which Api regulates these pathways remain unclear. PURPOSE The aim of this study was to investigate the role of Api on acute inflammation and its specific mechanism in mediating inflammation. METHODS The dextran sulfate sodium (DSS) induced ulcerative colitis (UC) model and LPS induced acute inflammation mouse model were established to investigate the anti-inflammatory effects of Api. Subsequently, the anti-inflammatory activity of Api was validated in vitro and vivo by RNA-seq, qPCR, Western blot, cytokine ELISA, immunofluorescence and histological analysis. A series of experiments were performed to study the effects of Api on IRAK4, including ADP-Glo™ kinase assay, surface plasmon resonance (SPR), cellular thermal shift assay (CETSA), and molecular docking simulation. The targeting of Api to IRAK4 was verified by IRAK4 inhibitor and siRNA. RESULTS Oral administration of Api significantly ameliorated inflammatory conditions in the LPS induced acute inflammation and DSS induced UC mouse models. Furthermore, Api inhibited the expression of interleukin and chemotactic factor genes and downregulated the immune response of macrophages at the transcriptome level. Mechanistically, Api acted as a novel IRAK4 inhibitor, inhibiting kinase activity by direct binding to IRAK4 (Kd = 4.78 μM) with an IC50 of 1.74 μM, interfering with extracellular signaling to the NF-κB and MAPK pathways, and reducing the expression of pro-inflammatory factors in an IRAK4 dependent manner. CONCLUSION In this study, Api was identified for the first time as a natural IRAK4 inhibitor that suppresses cytokine signaling pathways and modulates the immune response at the level of the transcriptome. The results provided valuable insights into the specific mechanism of Api inhibition of inflammatory activation and shed light on opportunities for the development of novel IRAK4 inhibitors based on Api, which is found in various plants.
Collapse
Affiliation(s)
- Pianchou Gongpan
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Tingting Xu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264211, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yufei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Kailong Ji
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Lingmei Kong
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, Yunnan 650091, China
| | - Xue Wang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264211, China
| | - Hongman Chen
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Qishi Song
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yili Sun
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264211, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China.
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264211, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310000, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Zhongshan, Guangdong 528400, China.
| |
Collapse
|
2
|
Umar S, Debnath K, Leung K, Huang CC, Lu Y, Gajendrareddy P, Ravindran S. Immunomodulatory properties of naïve and inflammation-informed dental pulp stem cell derived extracellular vesicles. Front Immunol 2024; 15:1447536. [PMID: 39224602 PMCID: PMC11366660 DOI: 10.3389/fimmu.2024.1447536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Mesenchymal stem cell derived extracellular vesicles (MSC EVs) are paracrine modulators of macrophage function. Scientific research has primarily focused on the immunomodulatory and regenerative properties MSC EVs derived from bone marrow. The dental pulp is also a source for MSCs, and their anatomical location and evolutionary function has primed them to be potent immunomodulators. In this study, we demonstrate that extracellular vesicles derived from dental pulp stem cells (DPSC EVs) have pronounced immunomodulatory effect on primary macrophages by regulating the NFκb pathway. Notably, the anti-inflammatory activity of DPSC-EVs is enhanced following exposure to an inflammatory stimulus (LPS). These inhibitory effects were also observed in vivo. Sequencing of the naïve and LPS preconditioned DPSC-EVs and comparison with our published results from marrow MSC EVs revealed that Naïve and LPS preconditioned DPSC-EVs are enriched with anti-inflammatory miRNAs, particularly miR-320a-3p, which appears to be unique to DPSC-EVs and regulates the NFκb pathway. Overall, our findings highlight the immunomodulatory properties of DPSC-EVs and provide vital clues that can stimulate future research into miRNA-based EV engineering as well as therapeutic approaches to inflammation control and disease treatment.
Collapse
Affiliation(s)
- Sadiq Umar
- Department of Oral Biology, University of Illinois, Chicago, IL, United States
| | - Koushik Debnath
- Department of Oral Biology, University of Illinois, Chicago, IL, United States
| | - Kasey Leung
- Department of Oral Biology, University of Illinois, Chicago, IL, United States
| | - Chun-Chieh Huang
- Department of Oral Biology, University of Illinois, Chicago, IL, United States
| | - Yu Lu
- Department of Oral Biology, University of Illinois, Chicago, IL, United States
| | | | - Sriram Ravindran
- Department of Oral Biology, University of Illinois, Chicago, IL, United States
| |
Collapse
|
3
|
Zou Y, Wang X, Chen P, Zheng Z, Li X, Chen Z, Guo M, Zhou Y, Sun C, Wang R, Zhu W, Zheng P, Cho WJ, Cho YC, Liang G, Tang Q. Fragment-Based Anti-inflammatory Agent Design and Target Identification: Discovery of AF-45 as an IRAK4 Inhibitor to Treat Ulcerative Colitis and Acute Lung Injury. J Med Chem 2024; 67:10687-10709. [PMID: 38913701 DOI: 10.1021/acs.jmedchem.4c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
UC and ALI are inflammatory diseases with limited treatment in the clinic. Herein, fragment-based anti-inflammatory agent designs were carried out deriving from cyclohexylamine/cyclobutylamine and several fragments from anti-inflammatory agents in our lab. AF-45 (IC50 = 0.53/0.60 μM on IL-6/TNF-α in THP-1 macrophages) was identified as the optimal molecule using ELISA and MTT assays from the 33 synthesized compounds. Through mechanistic studies and a systematic target search process, AF-45 was found to block the NF-κB/MAPK pathway and target IRAK4, a promising target for inflammation and autoimmune diseases. The selectivity of AF-45 targeting IRAK4 was validated by comparing its effects on other kinase/nonkinase proteins. In vivo, AF-45 exhibited a good therapeutic effect on UC and ALI, and favorable PK proprieties. Since there are currently no clinical or preclinical trials for IRAK4 inhibitors to treat UC and ALI, AF-45 provides a new lead compound or candidate targeting IRAK4 for the treatment of these diseases.
Collapse
Affiliation(s)
- Yu Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Xiemin Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Zhiwei Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Zhichao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Mi Guo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Ying Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Chenhui Sun
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Ran Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- School of Pharmacy, Hangzhou Medical College, Hangzhou 311399, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| |
Collapse
|
4
|
Wallace BI, Cooney L, Fox DA. New molecular targets in the treatment of rheumatoid arthritis. Curr Opin Rheumatol 2024; 36:235-240. [PMID: 38165286 DOI: 10.1097/bor.0000000000001000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW This review will discuss selected emerging molecular targets and associated potential therapeutic agents for rheumatoid arthritis (RA)-directed treatment. RECENT FINDINGS Agents in active development for RA treatment include those targeted to CD40 and CD40 ligand, programmed death protein 1 (PD-1), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Several other molecules with a strong theoretical role in RA pathogenesis and/or demonstrated efficacy in other autoimmune diseases are also being evaluated as potential drug targets in preclinical or translational studies in RA. These targets include interleukin 1 receptor associated kinases 1 and 4 (IRAK1, IRAK4), tyrosine kinase 2 (Tyk2), bradykinin receptor 1 (B1R), OX40 and OX40 ligand. SUMMARY Identification of molecular targets for RA treatment remains an active area of investigation, with multiple therapeutic agents in clinical and preclinical development.
Collapse
Affiliation(s)
- Beth I Wallace
- Division of Rheumatology, Department of Internal Medicine, University of Michigan
- Center for Clinical Management Research, VA Ann Arbor Healthcare System
- Rheumatology Section, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Laura Cooney
- Division of Rheumatology, Department of Internal Medicine, University of Michigan
| | - David A Fox
- Division of Rheumatology, Department of Internal Medicine, University of Michigan
| |
Collapse
|
5
|
Evans R, Bolduc PN, Pfaffenbach M, Gao F, May-Dracka T, Fang T, Hopkins BT, Chodaparambil JV, Henry KL, Li P, Metrick C, Nelson A, Trapa P, Thomas A, Burkly L, Peterson EA. The Discovery of 7-Isopropoxy-2-(1-methyl-2-oxabicyclo[2.1.1]hexan-4-yl)- N-(6-methylpyrazolo[1,5- a]pyrimidin-3-yl)imidazo[1,2- a]pyrimidine-6-carboxamide (BIO-7488), a Potent, Selective, and CNS-Penetrant IRAK4 Inhibitor for the Treatment of Ischemic Stroke. J Med Chem 2024; 67:4676-4690. [PMID: 38467640 DOI: 10.1021/acs.jmedchem.3c02226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Interleukin receptor-associated kinase 4 (IRAK4) is a key node of signaling within the innate immune system that regulates the production of inflammatory cytokines and chemokines. The presence of damage-associated molecular patterns (DAMPs) after tissue damage such as stroke or traumatic brain injury (TBI) initiates signaling through the IRAK4 pathway that can lead to a feed-forward inflammatory loop that can ultimately hinder patient recovery. Herein, we describe the first potent, selective, and CNS-penetrant IRAK4 inhibitors for the treatment of neuroinflammation. Lead compounds from the series were evaluated in CNS PK/PD models of inflammation, as well as a mouse model of ischemic stroke. The SAR optimization detailed within culminates in the discovery of BIO-7488, a highly selective and potent IRAK4 inhibitor that is CNS penetrant and has excellent ADME properties.
Collapse
Affiliation(s)
- Ryan Evans
- Department of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Philippe N Bolduc
- Department of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Magnus Pfaffenbach
- Department of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Fang Gao
- Department of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Tricia May-Dracka
- Department of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Terry Fang
- Department of Acute Neurology, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Brian T Hopkins
- Department of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jayanth V Chodaparambil
- Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kate L Henry
- Department of Acute Neurology, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Pei Li
- Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Claire Metrick
- Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ashley Nelson
- Department of Acute Neurology, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Patrick Trapa
- Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ankur Thomas
- Department of Acute Neurology, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Linda Burkly
- Department of Acute Neurology, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Emily A Peterson
- Department of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
6
|
Hu Z, Li Y, Zhang L, Jiang Y, Long C, Yang Q, Yang M. Metabolic changes in fibroblast-like synoviocytes in rheumatoid arthritis: state of the art review. Front Immunol 2024; 15:1250884. [PMID: 38482018 PMCID: PMC10933078 DOI: 10.3389/fimmu.2024.1250884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/06/2024] [Indexed: 03/22/2024] Open
Abstract
Fibroblast-like synoviocytes (FLS) are important components of the synovial membrane. They can contribute to joint damage through crosstalk with inflammatory cells and direct actions on tissue damage pathways in rheumatoid arthritis (RA). Recent evidence suggests that, compared with FLS in normal synovial tissue, FLS in RA synovial tissue exhibits significant differences in metabolism. Recent metabolomic studies have demonstrated that metabolic changes, including those in glucose, lipid, and amino acid metabolism, exist before synovitis onset. These changes may be a result of increased biosynthesis and energy requirements during the early phases of the disease. Activated T cells and some cytokines contribute to the conversion of FLS into cells with metabolic abnormalities and pro-inflammatory phenotypes. This conversion may be one of the potential mechanisms behind altered FLS metabolism. Targeting metabolism can inhibit FLS proliferation, providing relief to patients with RA. In this review, we aimed to summarize the evidence of metabolic changes in FLS in RA, analyze the mechanisms of these metabolic alterations, and assess their effect on RA phenotype. Finally, we aimed to summarize the advances and challenges faced in targeting FLS metabolism as a promising therapeutic strategy for RA in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiyue Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Kalliolias GD, Basdra EK, Papavassiliou AG. Targeting TLR Signaling Cascades in Systemic Lupus Erythematosus and Rheumatoid Arthritis: An Update. Biomedicines 2024; 12:138. [PMID: 38255243 PMCID: PMC10813148 DOI: 10.3390/biomedicines12010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Evidence from animal models and human genetics implicates Toll-like Receptors (TLRs) in the pathogenesis of Systemic Lupus Erythematosus (SLE) and Rheumatoid Arthritis (RA). Endosomal TLRs sensing nucleic acids were proposed to induce lupus-promoting signaling in dendritic cells, B cells, monocytes, and macrophages. Ligation of TLR4 in synovial macrophages and fibroblast-like synoviocytes (FLSs) by endogenous ligands was suggested to induce local production of mediators that amplify RA synovitis. Inhibition of TLRs using antagonists or monoclonal antibodies (mAbs) that selectively prevent extracellular or endosomal TLR ligation has emerged as an attractive treatment strategy for SLE and RA. Despite the consistent success of selective inhibition of TLR ligation in animal models, DV-1179 (dual TLR7/9 antagonist) failed to achieve pharmacodynamic effectiveness in SLE, and NI-0101 (mAb against TLR4) failed to improve arthritis in RA. Synergistic cooperation between TLRs and functional redundancy in human diseases may require pharmacologic targeting of intracellular molecules that integrate signaling downstream of multiple TLRs. Small molecules inhibiting shared kinases involved in TLR signaling and peptidomimetics disrupting the assembly of common signalosomes ("Myddosome") are under development. Targeted degraders (proteolysis-targeting chimeras (PROTACs)) of intracellular molecules involved in TLR signaling are a new class of TLR inhibitors with promising preliminary data awaiting further clinical validation.
Collapse
Affiliation(s)
- George D. Kalliolias
- Hospital for Special Surgery, Arthritis & Tissue Degeneration, New York, NY 10021, USA;
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Efthimia K. Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
8
|
Meyer A, Zack SR, Nijim W, Burgos A, Patel V, Zanotti B, Volin MV, Amin MA, Lewis MJ, Pitzalis C, Arami S, Karam JA, Sweiss NJ, Shahrara S. Metabolic reprogramming by Syntenin-1 directs RA FLS and endothelial cell-mediated inflammation and angiogenesis. Cell Mol Immunol 2024; 21:33-46. [PMID: 38105293 PMCID: PMC10757714 DOI: 10.1038/s41423-023-01108-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/01/2023] [Indexed: 12/19/2023] Open
Abstract
A novel rheumatoid arthritis (RA) synovial fluid protein, Syntenin-1, and its receptor, Syndecan-1 (SDC-1), are colocalized on RA synovial tissue endothelial cells and fibroblast-like synoviocytes (FLS). Syntenin-1 exacerbates the inflammatory landscape of endothelial cells and RA FLS by upregulating transcription of IRF1/5/7/9, IL-1β, IL-6, and CCL2 through SDC-1 ligation and HIF1α, or mTOR activation. Mechanistically, Syntenin-1 orchestrates RA FLS and endothelial cell invasion via SDC-1 and/or mTOR signaling. In Syntenin-1 reprogrammed endothelial cells, the dynamic expression of metabolic intermediates coincides with escalated glycolysis along with unchanged oxidative factors, AMPK, PGC-1α, citrate, and inactive oxidative phosphorylation. Conversely, RA FLS rewired by Syntenin-1 displayed a modest glycolytic-ATP accompanied by a robust mitochondrial-ATP capacity. The enriched mitochondrial-ATP detected in Syntenin-1 reprogrammed RA FLS was coupled with mitochondrial fusion and fission recapitulated by escalated Mitofusin-2 and DRP1 expression. We found that VEGFR1/2 and Notch1 networks are responsible for the crosstalk between Syntenin-1 rewired endothelial cells and RA FLS, which are also represented in RA explants. Similar to RA explants, morphological and transcriptome studies authenticated the importance of VEGFR1/2, Notch1, RAPTOR, and HIF1α pathways in Syntenin-1 arthritic mice and their obstruction in SDC-1 deficient animals. Consistently, dysregulation of SDC-1, mTOR, and HIF1α negated Syntenin-1 inflammatory phenotype in RA explants, while inhibition of HIF1α impaired synovial angiogenic imprint amplified by Syntenin-1. In conclusion, since the current therapies are ineffective on Syntenin-1 and SDC-1 expression in RA synovial tissue and blood, targeting this pathway and its interconnected metabolic intermediates may provide a novel therapeutic strategy.
Collapse
Affiliation(s)
- Anja Meyer
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Stephanie R Zack
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Wes Nijim
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Adel Burgos
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Vishwa Patel
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Brian Zanotti
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, USA
| | - M Asif Amin
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI, USA
| | - Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, London, UK
- Department of Biomedical Sciences, Humanitas University, and Humanitas Research Hospital, Milan, Italy
| | - Shiva Arami
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Joseph A Karam
- Department of Orthopedic Surgery, the University of Illinois at Chicago, Chicago, IL, USA
| | - Nadera J Sweiss
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL, USA.
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Lu C, Cheng RJ, Zhang Q, Hu Y, Pu Y, Wen J, Zhong Y, Tang Z, Wu L, Wei S, Tsou PS, Fox DA, Li S, Luo Y, Liu Y. Herbal compound cepharanthine attenuates inflammatory arthritis by blocking macrophage M1 polarization. Int Immunopharmacol 2023; 125:111175. [PMID: 37976601 DOI: 10.1016/j.intimp.2023.111175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE Cepharanthine (CEP) is a drug candidate for tumor, viral infection, and some inflammatory diseases, but its effect on rheumatoid arthritis (RA) and the underlying mechanism are incompletely understood. METHODS CEP was administered intraperitoneally to a collagen-induced arthritis (CIA) model. Joints went radiological and histological examination and serum cytokines were examined with cytometry-based analysis. M1 macrophages were induced from THP-1 cells or mouse bone marrow-derived macrophages with LPS and IFN-γ. Bulk RNA-seq was performed on macrophage undergoing M1-polarizatioin. Western blotting was applied to determine pathways involved in monocyte chemotaxis and polarization. Glycolysis metabolites were measured by chemiluminescence while glycolytic enzymes were examined by quantitative PCR. RESULTS We found CEP significantly ameliorated synovial inflammation and joint destruction of CIA mice. It downregulated TNF-α levels in serum and in joints. The number of M1 macrophages were reduced in CEP-treated mice. In vitro, CEP inhibited monocyte chemotaxis to MCP-1 by downregulating CCR2 and reducing ERK1/2 signaling. Additionally, CEP suppressed M1 polarization of macrophages induced by LPS and IFN-γ. Genes involved in IFN-γ signaling, IL-6-JAK/STAT3 signaling, glycolysis, and oxidative phosphorylation process were downregulated by CEP. Several enzymes critically involved in glycolytic metabolism were suppressed by CEP, which resulted in reduced citrate in M1-polarizing macrophages. The inhibitory effect of CEP on macrophage polarization might be attributed to the blockage of TLRs-MyD88/IRAK4-IRF5 signaling pathway together with suppression of overactivated glycolytic metabolism in M1-polarizing macrophages. CONCLUSION CEP attenuated joint inflammation by suppressing monocyte chemotaxis and proinflammatory differentiation. It has the potential to be developed into a complementary or alternative therapy for RA.
Collapse
Affiliation(s)
- Chenyang Lu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Division of Rheumatology, Department of Internal Medicine, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Rui-Juan Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiuping Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yidan Hu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaoyu Pu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ji Wen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yutong Zhong
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhigang Tang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shixiong Wei
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, NO. 1 Shuai Fu Yuan, Wang Fu Jing Street, Beijing 100730, China
| | - Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI, USA
| | - David A Fox
- Division of Rheumatology, Department of Internal Medicine and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI, USA
| | - Shasha Li
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Chang JS, Vinogradov AA, Zhang Y, Goto Y, Suga H. Deep Learning-Driven Library Design for the De Novo Discovery of Bioactive Thiopeptides. ACS CENTRAL SCIENCE 2023; 9:2150-2160. [PMID: 38033794 PMCID: PMC10683472 DOI: 10.1021/acscentsci.3c00957] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
Broad substrate tolerance of ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic enzymes has allowed numerous strategies for RiPP engineering. However, despite relaxed specificities, exact substrate preferences of RiPP enzymes are often difficult to pinpoint. Thus, when designing combinatorial libraries of RiPP precursors, balancing the compound diversity with the substrate fitness can be challenging. Here, we employed a deep learning model to streamline the design of mRNA display libraries. Using an in vitro reconstituted thiopeptide biosynthesis platform, we performed mRNA display-based profiling of substrate fitness for the biosynthetic pathway involving five enzymes to train an accurate deep learning model. We then utilized the model to design optimal mRNA libraries and demonstrated their utility in affinity selections against IRAK4 kinase and the TLR10 cell surface receptor. The selections led to the discovery of potent thiopeptide ligands against both target proteins (KD up to 1.3 nM for the best compound against IRAK4 and 300 nM for TLR10). The IRAK4-targeting compounds also inhibited the kinase at single-digit μM concentrations in vitro, exhibited efficient internalization into HEK293H cells, and suppressed NF-kB-mediated signaling in cells. Altogether, the developed approach streamlines the discovery of pseudonatural RiPPs with de novo designed biological activities and favorable pharmacological properties.
Collapse
Affiliation(s)
- Jun Shi Chang
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Alexander A. Vinogradov
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yue Zhang
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Goto
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Cooray S, Price-Kuehne F, Hong Y, Omoyinmi E, Burleigh A, Gilmour KC, Ahmad B, Choi S, Bahar MW, Torpiano P, Gagunashvili A, Jensen B, Bellos E, Sancho-Shimizu V, Herberg JA, Mankad K, Kumar A, Kaliakatsos M, Worth AJJ, Eleftheriou D, Whittaker E, Brogan PA. Neuroinflammation, autoinflammation, splenomegaly and anemia caused by bi-allelic mutations in IRAK4. Front Immunol 2023; 14:1231749. [PMID: 37744344 PMCID: PMC10516541 DOI: 10.3389/fimmu.2023.1231749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
We describe a novel, severe autoinflammatory syndrome characterized by neuroinflammation, systemic autoinflammation, splenomegaly, and anemia (NASA) caused by bi-allelic mutations in IRAK4. IRAK-4 is a serine/threonine kinase with a pivotal role in innate immune signaling from toll-like receptors and production of pro-inflammatory cytokines. In humans, bi-allelic mutations in IRAK4 result in IRAK-4 deficiency and increased susceptibility to pyogenic bacterial infections, but autoinflammation has never been described. We describe 5 affected patients from 2 unrelated families with compound heterozygous mutations in IRAK4 (c.C877T (p.Q293*)/c.G958T (p.D320Y); and c.A86C (p.Q29P)/c.161 + 1G>A) resulting in severe systemic autoinflammation, massive splenomegaly and severe transfusion dependent anemia and, in 3/5 cases, severe neuroinflammation and seizures. IRAK-4 protein expression was reduced in peripheral blood mononuclear cells (PBMC) in affected patients. Immunological analysis demonstrated elevated serum tumor necrosis factor (TNF), interleukin (IL) 1 beta (IL-1β), IL-6, IL-8, interferon α2a (IFN-α2a), and interferon β (IFN-β); and elevated cerebrospinal fluid (CSF) IL-6 without elevation of CSF IFN-α despite perturbed interferon gene signature. Mutations were located within the death domain (DD; p.Q29P and splice site mutation c.161 + 1G>A) and kinase domain (p.Q293*/p.D320Y) of IRAK-4. Structure-based modeling of the DD mutation p.Q29P showed alteration in the alignment of a loop within the DD with loss of contact distance and hydrogen bond interactions with IRAK-1/2 within the myddosome complex. The kinase domain mutation p.D320Y was predicted to stabilize interactions within the kinase active site. While precise mechanisms of autoinflammation in NASA remain uncertain, we speculate that loss of negative regulation of IRAK-4 and IRAK-1; dysregulation of myddosome assembly and disassembly; or kinase active site instability may drive dysregulated IL-6 and TNF production. Blockade of IL-6 resulted in immediate and complete amelioration of systemic autoinflammation and anemia in all 5 patients treated; however, neuroinflammation has, so far proven recalcitrant to IL-6 blockade and the janus kinase (JAK) inhibitor baricitinib, likely due to lack of central nervous system penetration of both drugs. We therefore highlight that bi-allelic mutation in IRAK4 may be associated with a severe and complex autoinflammatory and neuroinflammatory phenotype that we have called NASA (neuroinflammation, autoinflammation, splenomegaly and anemia), in addition to immunodeficiency in humans.
Collapse
Affiliation(s)
- Samantha Cooray
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Fiona Price-Kuehne
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ying Hong
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ebun Omoyinmi
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alice Burleigh
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London, United Kingdom
| | - Kimberly C. Gilmour
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Bilal Ahmad
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Mohammad W. Bahar
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, United Kingdom
| | - Paul Torpiano
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Andrey Gagunashvili
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Barbara Jensen
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Evangelos Bellos
- Section of Paediatric Infectious Diseases, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Vanessa Sancho-Shimizu
- Section of Paediatric Infectious Diseases, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jethro A. Herberg
- Section of Paediatric Infectious Diseases, Imperial College London, London, United Kingdom
- Department of Paediatric Infectious Diseases, St Mary’s Hospital, Imperial College NHS Healthcare Trust, London, United Kingdom
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Atul Kumar
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Marios Kaliakatsos
- Department of Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Austen J. J. Worth
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Despina Eleftheriou
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Elizabeth Whittaker
- Section of Paediatric Infectious Diseases, Imperial College London, London, United Kingdom
- Department of Paediatric Infectious Diseases, St Mary’s Hospital, Imperial College NHS Healthcare Trust, London, United Kingdom
| | - Paul A. Brogan
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
12
|
Yadav H, Shirumalla RK. Emerging trends in IRAK-4 kinase research. Mol Biol Rep 2023; 50:7825-7837. [PMID: 37490192 DOI: 10.1007/s11033-023-08438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 04/06/2023] [Indexed: 07/26/2023]
Abstract
The IRAK-4 kinase lies at a critical signaling node that drives cancer cell survival through multiple mechanisms, activation, and translocation of NF-κB mediated inflammatory responses and innate immune signaling through regulation of interferon-α/β receptor (IFNα/β). Inhibition, of IRAK-4, has consequently drawn a lot of attention in recent years to address indications ranging from oncology to autoimmune disorders to neurodegeneration, etc. However, the key stumbling block in targeting IRAK-4 is that despite the inhibition of the kinase activity using an inhibitor the target remains effective, reducing the potential of an inhibitor. This is due to the "scaffolding effect" because of which although regulation of downstream processes by IRAK-4 has been primarily linked with kinase function; however, still, various reports have suggested that IRAK-4 has a non-kinase function in a variety of cell types. This is attributed to the myddosome complex formed by IRAK-4 with myd88, IRAK-2, and IRAK-1 which by itself can cause the activation of downstream effector TRAF6 despite inhibition of the kinase domain of IRAK-4. With this challenge, several groups initiated the development of targeting protein degraders of IRAK-4 using Proteolysis-Targeting Chimeras (PROTACs) technology to completely remove the IRAK-4 from the cellular milieu. In this review, we will capture all these developments and the evolving science around this target.
Collapse
Affiliation(s)
- Himanshu Yadav
- SGT College of Pharmacy, SGT University, Budhera, Gurugram, Haryana, 122505, India
| | - Raj Kumar Shirumalla
- SGT College of Pharmacy, SGT University, Budhera, Gurugram, Haryana, 122505, India.
| |
Collapse
|
13
|
Radu AF, Negru PA, Radu A, Tarce AG, Bungau SG, Bogdan MA, Tit DM, Uivaraseanu B. Simulation-Based Research on Phytoconstituents of Embelia ribes Targeting Proteins with Pathophysiological Implications in Rheumatoid Arthritis. Life (Basel) 2023; 13:1467. [PMID: 37511842 PMCID: PMC10381729 DOI: 10.3390/life13071467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Rheumatoid arthritis (RA) is a heterogeneous inflammatory disease with an autoimmune origin and an incompletely elucidated pathophysiological mechanism. RA pharmacotherapy is based on chemically or biologically active substances that provide clinical alleviation and remission, but the disease is still incurable. As a result, there remains a need for significant therapeutic development, and adjuvant therapies may play an essential role in the search for novel RA treatment strategies. The aim of the present study was to investigate potential phytocompounds and phytocompound derivates as RA treatment agents, using in silico methodologies. In this regard, five phytoconstituents identified in different structures of Embelia ribes were evaluated by in silico methods for their potential action on target proteins of therapeutic interest in RA. The methodology involved identifying the phytocompound with the highest binding toward the target protein via molecular docking using AutoDock Vina 1.5.7, followed by a ligand-based virtual screening based on the structure of the most promising phytocompound using SwissSimilarity. This process led to the identification of ligands that are not currently utilized in medical practice, but that might have the potential to be used in the management of RA after further extensive experimental endorsements. ZINC000004024651 showed the highest binding affinity for the Bruton's tyrosine kinase protein, followed by ZINC000000434197 for p38 mitogen-activated protein kinases, ZINC000087606977 for interleukin-1 receptor-associated kinase 4, and ZINC000014728393 for matrix metallopeptidase 9, the latter two showing higher affinity than the co-crystallized compound. The relatively high affinities to target proteins and the pharmacokinetic data obtained by in silico studies using SwisADME suggest a first step for the inclusion of promising new compounds in various more advanced studies, leading to the evaluation of efficacy and safety profiles.
Collapse
Affiliation(s)
- Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.-F.R.); (D.M.T.); (B.U.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Paul Andrei Negru
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.-F.R.); (D.M.T.); (B.U.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Ada Radu
- Ducfarm Pharmacy, 410514 Oradea, Romania;
| | - Alexandra Georgiana Tarce
- Medicine Program of Study, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.-F.R.); (D.M.T.); (B.U.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Mihaela Alexandra Bogdan
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.-F.R.); (D.M.T.); (B.U.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Bogdan Uivaraseanu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.-F.R.); (D.M.T.); (B.U.)
- Department of Surgery Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
14
|
Bai YR, Yang WG, Hou XH, Shen DD, Zhang SN, Li Y, Qiao YY, Wang SQ, Yuan S, Liu HM. The recent advance of Interleukin-1 receptor associated kinase 4 inhibitors for the treatment of inflammation and related diseases. Eur J Med Chem 2023; 258:115606. [PMID: 37402343 DOI: 10.1016/j.ejmech.2023.115606] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
The interleukin-1 receptor associated kinase 4 (IRAK-4) is a member of serine-threonine kinase family, which plays an important role in the regulation of interleukin-1 receptors (IL-1R) and Toll-like receptors (TLRs) related signaling pathways. At present, the IRAK-4 mediated inflammation and related signaling pathways contribute to inflammation, which are also responsible for other autoimmune diseases and drug resistance in cancers. Therefore, targeting IRAK-4 to develop single-target, multi-target inhibitors and proteolysis-targeting chimera (PROTAC) degraders is an important direction for the treatment of inflammation and related diseases. Moreover, insight into the mechanism of action and structural optimization of the reported IRAK-4 inhibitors will provide the new direction to enrich the clinical therapies for inflammation and related diseases. In this comprehensive review, we introduced the recent advance of IRAK-4 inhibitors and degraders with regards to structural optimization, mechanism of action and clinical application that would be helpful for the development of more potent chemical entities against IRAK-4.
Collapse
Affiliation(s)
- Yi-Ru Bai
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei-Guang Yang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Xue-Hui Hou
- Faculty of Science, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Dan-Dan Shen
- Department of Obstetrics and Gynecology, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Sheng-Nan Zhang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Yan Li
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Yan-Yan Qiao
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Sai-Qi Wang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, 450008, China.
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
15
|
Song Z, Cheng Y, Chen M, Xie X. Macrophage polarization in bone implant repair: A review. Tissue Cell 2023; 82:102112. [PMID: 37257287 DOI: 10.1016/j.tice.2023.102112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/10/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Macrophages (MΦ) are highly adaptable and functionally polarized cells that play a crucial role in various physiological and pathological processes. Typically, MΦ differentiate into two distinct subsets: the proinflammatory (M1) and anti-inflammatory (M2) phenotypes. Due to their potent immunomodulatory and anti-inflammatory properties, MΦ have garnered significant attention in recent decades. In the context of bone implant repair, the immunomodulatory function of MΦ is of paramount importance. Depending on their polarization phenotype, MΦ can exert varying effects on osteogenesis, angiogenesis, and the inflammatory response around the implant. This paper provides an overview of the immunomodulatory and inflammatory effects of MΦ polarization in the repair of bone implants.
Collapse
Affiliation(s)
- Zhengzheng Song
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha 410078, Hunan, China; Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Yuxi Cheng
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha 410078, Hunan, China; Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Minmin Chen
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha 410078, Hunan, China.
| | - Xiaoli Xie
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha 410078, Hunan, China; Hunan Key Laboratory of Oral Health Research, Changsha 410008, Hunan, China.
| |
Collapse
|
16
|
Zhao J, Li J, Xu A, Xu Y, He F, Mao Y. IRAK4 inhibition: an effective strategy for immunomodulating peri-implant osseointegration via reciprocally-shifted polarization in the monocyte-macrophage lineage cells. BMC Oral Health 2023; 23:265. [PMID: 37158847 PMCID: PMC10169473 DOI: 10.1186/s12903-023-03011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND The biomaterial integration depends on its interaction with the host immune system. Monocyte-macrophage lineage cells are immediately recruited to the implant site, polarized into different phenotypes, and fused into multinucleated cells, thus playing roles in tissue regeneration. IL-1R-associated kinase 4 (IRAK4) inhibition was reported to antagonize inflammatory osteolysis and regulate osteoclasts and foreign body giant cells (FBGCs), which may be a potential target in implant osseointegration. METHODS In in-vitro experiments, we established simulated physiological and inflammatory circumstances in which bone-marrow-derived macrophages were cultured on sand-blasted and acid-etched (SLA) titanium surfaces to evaluate the induced macrophage polarization, multinucleated cells formation, and biological behaviors in the presence or absence of IRAK4i. Then, bone marrow stromal stem cells (BMSCs) were cultured in the conditioned media collected from the aforementioned induced osteoclasts or FBGCs cultures to clarify the indirect coupling effect of multinucleated cells on BMSCs. We further established a rat implantation model, which integrates IRAK4i treatment with implant placement, to verify the positive effect of IRAK4 inhibition on the macrophage polarization, osteoclast differentiation, and ultimately the early peri-implant osseointegration in vivo. RESULTS Under inflammatory conditions, by transforming the monocyte-macrophage lineage cells from M1 to M2, IRAK4i treatment could down-regulate the formation and activity of osteoclast and relieve the inhibition of FBGC generation, thus promoting osteogenic differentiation in BMSCs and improve the osseointegration. CONCLUSION This study may improve our understanding of the function of multinucleated cells and offer IRAK4i as a therapeutic strategy to improve early implant osseointegration and help to eliminate the initial implant failure.
Collapse
Affiliation(s)
- Juan Zhao
- Department of ProsthodonticsSchool of StomatologyZhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 31000, China
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, 166 QiuTao Rd(N), Hangzhou, 310000, China
| | - Jia Li
- Department of ProsthodonticsSchool of StomatologyZhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 31000, China
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, 166 QiuTao Rd(N), Hangzhou, 310000, China
| | - Antian Xu
- Department of ProsthodonticsSchool of StomatologyZhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 31000, China
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, 166 QiuTao Rd(N), Hangzhou, 310000, China
| | - Yangbo Xu
- Department of ProsthodonticsSchool of StomatologyZhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 31000, China
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, 166 QiuTao Rd(N), Hangzhou, 310000, China
| | - Fuming He
- Department of ProsthodonticsSchool of StomatologyZhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 31000, China.
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, 166 QiuTao Rd(N), Hangzhou, 310000, China.
| | - Yingjie Mao
- Department of ProsthodonticsSchool of StomatologyZhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 31000, China.
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, 166 QiuTao Rd(N), Hangzhou, 310000, China.
| |
Collapse
|
17
|
Meyer A, Sienes RE, Nijim W, Zanotti B, Umar S, Volin MV, Van Raemdonck K, Lewis M, Pitzalis C, Arami S, Al-Awqati M, Chang HJ, Jetanalin P, Schett G, Sweiss N, Shahrara S. Syntenin-1-mediated arthritogenicity is advanced by reprogramming RA metabolic macrophages and Th1 cells. Ann Rheum Dis 2023; 82:483-495. [PMID: 36593091 PMCID: PMC10314955 DOI: 10.1136/ard-2022-223284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/14/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Syntenin-1, a novel endogenous ligand, was discovered to be enriched in rheumatoid arthritis (RA) specimens compared with osteoarthritis synovial fluid and normal synovial tissue (ST). However, the cellular origin, immunoregulation and molecular mechanism of syntenin-1 are undescribed in RA. METHODS RA patient myeloid and lymphoid cells, as well as preclinical models, were used to investigate the impact of syntenin-1/syndecan-1 on the inflammatory and metabolic landscape. RESULTS Syntenin-1 and syndecan-1 (SDC-1) co-localise on RA ST macrophages (MΦs) and endothelial cells. Intriguingly, blood syntenin-1 and ST SDC-1 transcriptome are linked to cyclic citrullinated peptide, erythrocyte sedimentation rate, ST thickness and bone erosion. Metabolic CD14+CD86+GLUT1+MΦs reprogrammed by syntenin-1 exhibit a wide range of proinflammatory interferon transcription factors, monokines and glycolytic factors, along with reduced oxidative intermediates that are downregulated by blockade of SDC-1, glucose uptake and/or mTOR signalling. Inversely, IL-5R and PDZ1 inhibition are ineffective on RA MΦs-reprogrammed by syntenin-1. In syntenin-1-induced arthritis, F4/80+iNOS+RAPTOR+MΦs represent glycolytic RA MΦs, by amplifying the inflammatory and glycolytic networks. Those networks are abrogated in SDC-1-/- animals, while joint prorepair monokines are unaffected and the oxidative metabolites are moderately replenished. In RA cells and/or preclinical model, syntenin-1-induced arthritogenicity is dependent on mTOR-activated MΦ remodelling and its ability to cross-regulate Th1 cells via IL-12 and IL-18 induction. Moreover, RA and joint myeloid cells exposed to Syntenin-1 are primed to transform into osteoclasts via SDC-1 ligation and RANK, CTSK and NFATc1 transcriptional upregulation. CONCLUSION The syntenin-1/SDC-1 pathway plays a critical role in the inflammatory and metabolic landscape of RA through glycolytic MΦ and Th1 cell cross-regulation (graphical abstract).
Collapse
Affiliation(s)
- Anja Meyer
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Ryan E Sienes
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Wes Nijim
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Brian Zanotti
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, Illinois, USA
| | - Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, Illinois, USA
| | - Katrien Van Raemdonck
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Myles Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, UK
- Centre for Translational Bioinformatics, Queen Mary University of London William Harvey Research Institute, London, UK
| | - Costantino Pitzalis
- Experimental Medicine and Rheumatology, William Harvey Research Institute, London, UK
| | - Shiva Arami
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Mina Al-Awqati
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Huan J Chang
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Pim Jetanalin
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nadera Sweiss
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
18
|
Arshad MF, Alam A, Alshammari AA, Alhazza MB, Alzimam IM, Alam MA, Mustafa G, Ansari MS, Alotaibi AM, Alotaibi AA, Kumar S, Asdaq SMB, Imran M, Deb PK, Venugopala KN, Jomah S. Thiazole: A Versatile Standalone Moiety Contributing to the Development of Various Drugs and Biologically Active Agents. Molecules 2022; 27:molecules27133994. [PMID: 35807236 PMCID: PMC9268695 DOI: 10.3390/molecules27133994] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 12/10/2022] Open
Abstract
For many decades, the thiazole moiety has been an important heterocycle in the world of chemistry. The thiazole ring consists of sulfur and nitrogen in such a fashion that the pi (π) electrons are free to move from one bond to other bonds rendering aromatic ring properties. On account of its aromaticity, the ring has many reactive positions where donor–acceptor, nucleophilic, oxidation reactions, etc., may take place. Molecules containing a thiazole ring, when entering physiological systems, behave unpredictably and reset the system differently. These molecules may activate/stop the biochemical pathways and enzymes or stimulate/block the receptors in the biological systems. Therefore, medicinal chemists have been focusing their efforts on thiazole-bearing compounds in order to develop novel therapeutic agents for a variety of pathological conditions. This review attempts to inform the readers on three major classes of thiazole-bearing molecules: Thiazoles as treatment drugs, thiazoles in clinical trials, and thiazoles in preclinical and developmental stages. A compilation of preclinical and developmental thiazole-bearing molecules is presented, focusing on their brief synthetic description and preclinical studies relating to structure-based activity analysis. The authors expect that the current review may succeed in drawing the attention of medicinal chemists to finding new leads, which may later be translated into new drugs.
Collapse
Affiliation(s)
- Mohammed F. Arshad
- Department of Research and Scientific Communications, Isthmus Research and Publishing House, U-13, Near Badi Masjid, Pulpehlad Pur, New Delhi 110044, India;
- Correspondence: (M.F.A.); or (S.M.B.A.); (M.I.)
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Abdullah Ayed Alshammari
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (A.A.A.); (M.B.A.); (I.M.A.)
| | - Mohammed Bader Alhazza
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (A.A.A.); (M.B.A.); (I.M.A.)
| | - Ibrahim Mohammed Alzimam
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (A.A.A.); (M.B.A.); (I.M.A.)
| | - Md Anish Alam
- Department of Research and Scientific Communications, Isthmus Research and Publishing House, U-13, Near Badi Masjid, Pulpehlad Pur, New Delhi 110044, India;
| | - Gulam Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia;
| | - Md Salahuddin Ansari
- Department of Pharmacy Practice, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia;
| | - Abdulelah M. Alotaibi
- Internee, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia; (A.M.A.); (A.A.A.)
| | - Abdullah A. Alotaibi
- Internee, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia; (A.M.A.); (A.A.A.)
| | - Suresh Kumar
- Drug Regulatory Affair, Department, Pharma Beistand, New Delhi 110017, India;
| | - Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah 13713, Saudi Arabia
- Correspondence: (M.F.A.); or (S.M.B.A.); (M.I.)
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
- Correspondence: (M.F.A.); or (S.M.B.A.); (M.I.)
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Shahamah Jomah
- Pharmacy Department, Dr. Sulaiman Al-Habib Medical Group, Riyadh 11372, Saudi Arabia;
| |
Collapse
|
19
|
Umar S, Palasiewicz K, Meyer A, Kumar P, Prabhakar BS, Volin MV, Rahat R, Al-Awqati M, Chang HJ, Zomorrodi RK, Rehman J, Shahrara S. Inhibition of IRAK4 dysregulates SARS-CoV-2 spike protein-induced macrophage inflammatory and glycolytic reprogramming. Cell Mol Life Sci 2022; 79:301. [PMID: 35588018 PMCID: PMC9118817 DOI: 10.1007/s00018-022-04329-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022]
Abstract
Escalated innate immunity plays a critical role in SARS-CoV-2 pathology; however, the molecular mechanism is incompletely understood. Thus, we aim to characterize the molecular mechanism by which SARS-CoV-2 Spike protein advances human macrophage (Mϴ) inflammatory and glycolytic phenotypes and uncover novel therapeutic strategies. We found that human Mϴs exposed to Spike protein activate IRAK4 phosphorylation. Blockade of IRAK4 in Spike protein-stimulated Mϴs nullifies signaling of IRAK4, AKT, and baseline p38 without affecting ERK and NF-κB activation. Intriguingly, IRAK4 inhibitor (IRAK4i) rescues the SARS-CoV-2-induced cytotoxic effect in ACE2+HEK 293 cells. Moreover, the inflammatory reprogramming of Mϴs by Spike protein was blunted by IRAK4i through IRF5 and IRF7, along with the reduction of monokines, IL-6, IL-8, TNFα, and CCL2. Notably, in Spike protein-stimulated Mϴs, suppression of the inflammatory markers by IRAK4i was coupled with the rebalancing of oxidative phosphorylation over metabolic activity. This metabolic adaptation promoted by IRAK4i in Spike protein-activated Mϴs was shown to be in part through constraining PFKBF3, HIF1α, cMYC, LDHA, lactate expression, and reversal of citrate and succinate buildup. IRAK4 knockdown could comparably impair Spike protein-enhanced inflammatory and metabolic imprints in human Mϴs as those treated with ACE2, TLR2, and TLR7 siRNA. Extending these results, in murine models, where human SARS-CoV-2 Spike protein was not recognized by mouse ACE2, TLRs were responsible for the inflammatory and glycolytic responses instigated by Spike protein and were dysregulated by IRAK4i therapy. In conclusion, IRAK4i may be a promising strategy for severe COVID-19 patients by counter-regulating ACE2 and TLR-mediated Mϴ hyperactivation. IRAK4i therapy counteracts Mϴ inflammatory and glycolytic reprogramming triggered by Spike protein. This study illustrates that SARS-CoV-2 Spike protein activates IRAK4 signaling via ACE2 as well as TLR2 and TLR7 sensing in human Mϴs. Remarkably, IRAK4i treatment can dysregulate both ACE-dependent and independent (via TLR sensing) SARS-CoV-2 Spike protein-activated inflammatory and metabolic imprints.
Collapse
Affiliation(s)
- Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Karol Palasiewicz
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Anja Meyer
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, USA
| | - Rani Rahat
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Mina Al-Awqati
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Huan J Chang
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Ryan K Zomorrodi
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Jalees Rehman
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, Chicago, IL, USA
- Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL, USA.
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA.
| |
Collapse
|
20
|
Xu X, Zhi T, Hua L, Jiang K, Chen C. IRAK4 exacerbates traumatic brain injury via activation of TAK1 signaling pathway. Exp Neurol 2022; 351:114007. [PMID: 35149117 DOI: 10.1016/j.expneurol.2022.114007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 11/04/2022]
Abstract
Although multiple signaling pathways contributing to the pathophysiological process have been investigated, treatments for traumatic brain injury (TBI) against present targets have not acquired significant clinical progress. Interleukin-1 receptor-associated kinase 4 (IRAK4) is an important factor involved in regulating immunity and inflammation. However, the role of IRAK4 in TBI still remains largely unknown. Therefore, using a controlled cortical impact model (CCI), we investigated the function and molecular mechanism of IRAK4 in the context of TBI. IRAK4 was found to be activated in a time-dependent manner after TBI and mainly expressed in neurons. Inhibition of IRAK4 by siRNAs could significantly alleviates neuroinflammation, neuron apoptosis, brain edema, brain-blood barrier (BBB) dysfunction and improves neurological deficit in the context of CCI. Mechanistically, IRAK4 exacerbates CCI via activation of TAK1 signaling pathway. Interestingly, PF-0665083, an IRAK4 inhibitor, inhibits phosphorylation of IRAK4 and attenuates CCI-induced secondary injury. It could be conclude that IRAK4 plays a critical role in TBI-induced secondary injury and the underlining mechanism may be related to activation of TAK1 signaling pathway. PF-0665083 may serve as a potential treatment strategy to relieve TBI.
Collapse
Affiliation(s)
- Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Tongle Zhi
- Department of Neurosurgery, The First People's Hospital of Yancheng, the Fourth Affiliated Hospital of Nantong University, Yancheng 224006, Jiangsu Province, China
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200000, China
| | - Kuan Jiang
- Department of Neurosurgery, Yixing People's Hospital, Yixing 214200, Jiangsu Province, China
| | - Chen Chen
- Department of Cardiology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
21
|
Van Raemdonck K, Umar S, Palasiewicz K, Meyer A, Volin MV, Chang HJ, Al-Awqati M, Zomorrodi RK, Shahrara S. Metabolic reprogramming of macrophages instigates CCL21-induced arthritis. Immunol Cell Biol 2022; 100:127-135. [PMID: 34779007 PMCID: PMC8810694 DOI: 10.1111/imcb.12512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 02/03/2023]
Abstract
This study was designed to delineate the functional significance of CCL21 in metabolic reprogramming in experimental arthritis and differentiated rheumatoid arthritis (RA) macrophages (MΦs). To characterize the influence of CCL21 on immunometabolism, its mechanism of action was elucidated by dysregulating glucose uptake in preclinical arthritis and RA MΦs. In CCL21 arthritic joints, the glycolytic intermediates hypoxia-inducible factor 1α (HIF1α), cMYC and GLUT1 were overexpressed compared with oxidative regulators estrogen-related receptor γ and peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1)-α. Interestingly, 2-deoxy-D-glucose (2-DG) therapy mitigated CCL21-induced arthritis by restraining the number of joint F4/80+ iNOS+ MΦs without impacting F4/80+ Arginase+ MΦs. Similar to the preclinical findings, blockade of glycolysis negated CCL21-polarized CD14+ CD86+ GLUT+ MΦ frequency; however, CD14+ CD206+ GLUT+ MΦs were not implicated in this process. In CCL21-induced arthritis and differentiated RA MΦs, the inflammatory imprint was uniquely intercepted by 2-DG via interleukin-6 (IL-6) downregulation. Despite the more expansive inflammatory response of CCL21 in the arthritic joints relative to the differentiated RA MΦs, 2-DG was ineffective in joint tumor necrosis factor-α, IL-1β, CCL2 and CCL5 enrichment. By contrast, disruption of glycolysis markedly impaired CCL21-induced HIF1α and cMYC signaling in arthritic mice. Notably, in RA MΦs, glycolysis interception was directed toward dysregulating CCL21-enhanced HIF1α transcription. Nonetheless, in concurrence with the diminished IL-6 levels, CCL21 differentiation of CD14+ CD86+ GLUT1+ MΦs was reversed by glycolysis and HIIF1α inhibition. Moreover, in the CCL21 experimental arthritis or differentiated RA MΦs, the malfunctioning metabolic machinery was accompanied by impaired oxidative phosphorylation because of reduced PGC1α or peroxisome proliferator-activated receptor-γ expression. CCL21 reconfigures naïve myeloid cells into glycolytic RA CD14+ CD86+ GLUT+ IL-6high HIF1αhigh MΦs. Therefore, inhibiting the CCL21/CCR7 pathway may provide a promising therapeutic strategy.
Collapse
Affiliation(s)
- Katrien Van Raemdonck
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, USA
| | - Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, USA
| | - Karol Palasiewicz
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, USA
| | - Anja Meyer
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, USA
| | - Huan J Chang
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, USA
| | - Mina Al-Awqati
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, USA
| | - Ryan K Zomorrodi
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, USA
| |
Collapse
|
22
|
Umar S, Palasiewicz K, Volin MV, Zanotti B, Al-Awqati M, Sweiss N, Shahrara S. IRAK4 inhibitor mitigates joint inflammation by rebalancing metabolism malfunction in RA macrophages and fibroblasts. Life Sci 2021; 287:120114. [PMID: 34732329 PMCID: PMC10020992 DOI: 10.1016/j.lfs.2021.120114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/28/2022]
Abstract
Recent studies show a connection between glycolysis and inflammatory response in rheumatoid arthritis (RA) macrophages (MΦs) and fibroblasts (FLS). Yet, it is unclear which pathways could be targeted to rebalance RA MΦs and FLS metabolic reprogramming. To identify novel targets that could normalize RA metabolic reprogramming, TLR7-mediated immunometabolism was characterized in RA MΦs, FLS and experimental arthritis. We uncovered that GLUT1, HIF1α, cMYC, LDHA and lactate were responsible for the TLR7-potentiated metabolic rewiring in RA MΦs and FLS, which was negated by IRAK4i. While in RA FLS, HK2 was uniquely expanded by TLR7 and negated by IRAK4i. Conversely, TLR7-driven hypermetabolism, non-oxidative PPP (CARKL) and oxidative phosphorylation (PPARγ) were narrowly dysregulated in TLR7-activated RA MΦs and FLS and was reversed by IRAK4i. Consistently, IRAK4i therapy disrupted arthritis mediated by miR-Let7b/TLR7 along with impairing a broad-range of glycolytic intermediates, GLUT1, HIF1α, cMYC, HK2, PFKFB3, PKM2, PDK1 and RAPTOR. Notably, inhibition of the mutually upregulated glycolytic metabolites, HIF1α and cMYC, was capable of mitigating TLR7-induced inflammatory imprint in RA MΦs and FLS. In keeping with IRAK4i, treatment with HIF1i and cMYCi intercepted TLR7-enhanced IRF5 and IRF7 in RA MΦs, distinct from RA FLS. Interestingly, in RA MΦs and FLS, IRAK4i counteracted TLR7-induced CARKL reduction in line with HIF1i. Whereas, cMYCi in concordance with IRAK4i, overturned oxidative phosphorylation via PPARγ in TLR7-activated RA MΦs and FLS. The blockade of IRAK4 and its interconnected intermediates can rebalance the metabolic malfunction by obstructing glycolytic and inflammatory phenotypes in RA MΦs and FLS.
Collapse
Affiliation(s)
- Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, IL 60612, United States of America; Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, United States of America
| | - Karol Palasiewicz
- Jesse Brown VA Medical Center, Chicago, IL 60612, United States of America; Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, United States of America
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, United States of America
| | - Brian Zanotti
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, United States of America
| | - Mina Al-Awqati
- Jesse Brown VA Medical Center, Chicago, IL 60612, United States of America; Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, United States of America
| | - Nadera Sweiss
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, United States of America
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL 60612, United States of America; Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, United States of America.
| |
Collapse
|
23
|
Li M, Li H, Ran X, Yin H, Luo X, Chen Z. Effects of adenovirus-mediated knockdown of IRAK4 on synovitis in the osteoarthritis rabbit model. Arthritis Res Ther 2021; 23:294. [PMID: 34863246 PMCID: PMC8643028 DOI: 10.1186/s13075-021-02684-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/20/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The use of interleukin-1 receptor-associated kinase 4 (IRAK4) inhibitor as a treatment for the inflammatory joint disease is a promising method. However, its underlying mechanism in osteoarthritis (OA) remains unclear. The purpose of this study is to look into the effects of adenovirus-mediated knockdown of IRAK4 on synovitis in the OA rabbit model. METHODS Ad-shIRAK4 was injected two weeks after anterior cruciate ligament resection. Six weeks later, the rabbits were killed. The expression of IRAK4, TNFR-associated factor 6(TRAF6), TGF-activated kinase 1(TAK1), p-IKB kinase (p-IKK), p-nuclear factor kappa-B (p-NFκB), p38, and p-p38 in the synovial membrane was detected by western blot, qRT-PCR, and immunohistochemistry analysis. Immunohistochemistry was to detect the expression of IRAK4 proteins in articular cartilage. H&E staining was to assess the pathological changes of synovium and cartilage. The levels of interleukin (IL)-1β, tumor necrosis factor-α(TNF-α), and MMP-13 in the synovial fluid were measured by ELISA. X-ray and micro-computerized tomography (μCT) scans were used to assess knee joint conditions and microstructure of subchondral bone. RESULTS IRAK4 expression levels in synovial tissues of the OA model group exhibited a significant upward trend. Ad-shIRAK4 significantly reduced IRAK4 mRNA expression in synovium tissues. Notably, Ad-shIRAK4 suppressed the Toll-like receptor/interleukin-1 receptor (TLR/IL-1R) signaling. In addition, in the Ad-shIRAK4 treatment group, we can see less inflammatory cell infiltration and reduced hyperplasia and angiogenesis. The levels of IL-1β, TNF-α, and MMP-13 in the synovial fluid in the OA model group were significantly higher than that in the control group, which were reduced by Ad-shIRAK4 treatment. Finally, Results of HE stains, immunohistochemistry, and μCT showed that Ad-shIRAK4 treatment has a protective effect on cartilage damage. CONCLUSIONS IRAK4 is significantly upregulated in the synovium from the osteoarthritis rabbit model. In addition, Ad-shIRAK4 reduced the expression of IRAK4 and suppressed TLR/IL-1R signaling in the synovium from the osteoarthritis rabbit model. Ad-shIRAK4 could alleviate synovitis and cartilage degradation in the osteoarthritis rabbit model, and thus alleviate the symptoms of OA and prevent the progression of OA.
Collapse
Affiliation(s)
- Muzhe Li
- Department of Orthopedic, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Huiyun Li
- Department of Orthopedic, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Xun Ran
- Department of Orthopedic, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Han Yin
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xuling Luo
- Department of Orthopedic, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China.
| | - Zhiwei Chen
- Department of Orthopedic, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China.
| |
Collapse
|
24
|
Umar S, Palasiewicz K, Volin MV, Romay B, Rahat R, Tetali C, Arami S, Guma M, Ascoli C, Sweiss N, Zomorrodi RK, O'Neill LAJ, Shahrara S. Metabolic regulation of RA macrophages is distinct from RA fibroblasts and blockade of glycolysis alleviates inflammatory phenotype in both cell types. Cell Mol Life Sci 2021; 78:7693-7707. [PMID: 34705053 PMCID: PMC8739866 DOI: 10.1007/s00018-021-03978-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/10/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022]
Abstract
Recent studies have shown the significance of metabolic reprogramming in immune and stromal cell function. Yet, the metabolic reconfiguration of RA macrophages (MΦs) is incompletely understood during active disease and in crosstalk with other cell types in experimental arthritis. This study elucidates a distinct regulation of glycolysis and oxidative phosphorylation in RA MΦs compared to fibroblast (FLS), although PPP (Pentose Phosphate pathway) is similarly reconfigured in both cell types. 2-DG treatment showed a more robust impact on impairing the RA M1 MΦ-mediated inflammatory phenotype than IACS-010759 (IACS, complexli), by reversing ERK, AKT and STAT1 signaling, IRF8/3 transcription and CCL2 or CCL5 secretion. This broader inhibitory effect of 2-DG therapy on RA M1 MΦs was linked to dysregulation of glycolysis (GLUT1, PFKFB3, LDHA, lactate) and oxidative PPP (NADP conversion to NADPH), while both compounds were ineffective on oxidative phosphorylation. Distinctly, in RA FLS, 2-DG and IACS therapies constrained LPS/IFNγ-induced AKT and JNK signaling, IRF5/7 and fibrokine expression. Disruption of RA FLS metabolic rewiring by 2-DG or IACS therapy was accompanied by a reduction of glycolysis (HIF1α, PFKFB3) and suppression of citrate or succinate buildup. We found that 2-DG therapy mitigated CIA pathology by intercepting joint F480+iNOS+MΦ, Vimentin+ fibroblast and CD3+T cell trafficking along with downregulation of IRFs and glycolytic intermediates. Surprisingly, IACS treatment was inconsequential on CIA swelling, cell infiltration, M1 and Th1/Th17 cytokines (IFN-γ/IL-17) and joint glycolytic mediators. Collectively, our results indicate that blockade of glycolysis is more effective than inhibition of complex 1 in CIA, in part due to its effectiveness on the MΦ inflammatory phenotype.
Collapse
Affiliation(s)
- Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Karol Palasiewicz
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, USA
| | - Bianca Romay
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Rani Rahat
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Chandana Tetali
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Shiva Arami
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Monica Guma
- Division of Rheumatology, Allergy and Immunology, San Diego, School of Medicine, University of California, La Jolla, CA, USA
- VA Medical Center, San Diego, CA, USA
| | - Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep, and Allergy, The University of Illinois at Chicago, Chicago, IL, USA
| | - Nadera Sweiss
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Ryan K Zomorrodi
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL, USA.
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA.
| |
Collapse
|
25
|
Van Raemdonck K, Umar S, Palasiewicz K, Volin MV, Elshabrawy HA, Romay B, Tetali C, Ahmed A, Amin MA, Zomorrodi RK, Sweiss N, Shahrara S. Interleukin-34 Reprograms Glycolytic and Osteoclastic Rheumatoid Arthritis Macrophages via Syndecan 1 and Macrophage Colony-Stimulating Factor Receptor. Arthritis Rheumatol 2021; 73:2003-2014. [PMID: 33982895 PMCID: PMC8568622 DOI: 10.1002/art.41792] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/27/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVE In rheumatoid arthritis (RA), elevated serum interleukin-34 (IL-34) levels are linked with increased disease severity. IL-34 binds to 2 receptors, macrophage colony-stimulating factor receptor (M-CSFR) and syndecan 1, which are coexpressed in RA macrophages. Expression of both IL-34 and syndecan 1 is strikingly elevated in the RA synovium, yet their mechanisms of action remain undefined. This study was undertaken to investigate the mechanism of action of IL-34 in RA. METHODS To characterize the significance of IL-34 in immunometabolism, its mechanism of action was elucidated in joint macrophages, fibroblasts, and T effector cells using RA and preclinical models. RESULTS Intriguingly, syndecan 1 activated IL-34-induced M-CSFR phosphorylation and reprogrammed RA naive cells into distinctive CD14+CD86+GLUT1+ M34 macrophages that expressed elevated levels of IL-1β, CXCL8, and CCL2. In murine M34 macrophages, the inflammatory phenotype was accompanied by potentiated glycolytic activity, exhibited by transcriptional up-regulation of GLUT1, c-Myc, and hypoxia-inducible factor 1α (HIF-1α) and amplified pyruvate and l-lactate secretion. Local expression of IL-34 provoked arthritis by expanding the glycolytic F4/80-positive, inducible nitric oxide synthase (iNOS)-positive macrophage population, which in turn attracted fibroblasts and polarized Th1/Th17 cells. The cross-talk between murine M34 macrophages and Th1/Th17 cells broadened the inflammatory and metabolic phenotypes, resulting in the expansion of IL-34 pathogenicity. Consequently, IL-34-instigated joint inflammation was alleviated in RAG-/- mice compared to wild-type mice. Syndecan 1 deficiency attenuated IL-34-induced arthritis by interfering with joint glycolytic M34 macrophage and osteoclast remodeling. Similarly, inhibition of glycolysis by 2-deoxy-d-glucose reversed the joint swelling and metabolic rewiring triggered by IL-34 via HIF-1α and c-Myc induction. CONCLUSION IL-34 is a novel endogenous factor that remodels hypermetabolic M34 macrophages and facilitates their cross-regulation with T effector cells to advance inflammatory bone destruction in RA.
Collapse
Affiliation(s)
- Katrien Van Raemdonck
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| | - Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| | - Karol Palasiewicz
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| | - Michael V. Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, USA
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Bianca Romay
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| | - Chandana Tetali
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| | - Azam Ahmed
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| | - M. Asif Amin
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ryan K. Zomorrodi
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| | - Nadera Sweiss
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| |
Collapse
|
26
|
Palasiewicz K, Umar S, Romay B, Zomorrodi RK, Shahrara S. Tofacitinib therapy intercepts macrophage metabolic reprogramming instigated by SARS-CoV-2 Spike protein. Eur J Immunol 2021; 51:2330-2340. [PMID: 34107055 PMCID: PMC8237023 DOI: 10.1002/eji.202049159] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/14/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022]
Abstract
The molecular mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein was characterized to identify novel therapies. The impact of tofacitinib, IL-6R Ab, or TNFi therapy was determined on Spike protein or LPS/IFN-γ-induced signaling, inflammation, and metabolic reprogramming in MΦs and/or rheumatoid arthritis (RA) fibroblast-like synoviocyte (FLS). ACE2 frequency was markedly expanded in MΦs compared to T cells and RA FLS. Tofacitinib suppresses Spike protein potentiated STAT1 signaling, whereas this function was unchanged by TNFi. Tofacitinib impairs IL-6/IFN/LPS-induced STAT1 and STAT3 phosphorylation in RA MΦs and FLS. Interestingly, tofacitinib had a broader inhibitory effect on the monokines, glycolytic regulators, or oxidative metabolites compared to IL-6R Ab and TNFi in Spike-protein-activated MΦs. In contrast, all three therapies disrupted IFN-α and IFN-β secretion in response to Spike protein; nonetheless, the IFN-γ was only curtailed by tofacitinib or IL-6R Ab. While tofacitinib counteracted MΦ metabolic rewiring instigated by Spike protein, it was inconsequential on the glycolysis expansion mediated via HK2 and/or LDHA in the activated RA MΦ and FLS. Nevertheless, the potentiated inflammatory response and the diminished oxidative phosphorylation modulated by Spike protein and/or LPS/IFN-γ stimulation in MΦs or RA FLS were reversed by tofacitinib. In conclusion, tofacitinib suppresses MΦ inflammation and immunometabolism triggered by Spike protein and may provide a promising strategy for COVID-19 patients.
Collapse
Affiliation(s)
- Karol Palasiewicz
- Jesse Brown VA Medical CenterChicagoILUSA
- Division of RheumatologyDepartment of Medicine, The University of Illinois at ChicagoChicagoILUSA
| | - Sadiq Umar
- Jesse Brown VA Medical CenterChicagoILUSA
- Division of RheumatologyDepartment of Medicine, The University of Illinois at ChicagoChicagoILUSA
| | - Bianca Romay
- Division of RheumatologyDepartment of Medicine, The University of Illinois at ChicagoChicagoILUSA
| | - Ryan K. Zomorrodi
- Division of RheumatologyDepartment of Medicine, The University of Illinois at ChicagoChicagoILUSA
| | - Shiva Shahrara
- Jesse Brown VA Medical CenterChicagoILUSA
- Division of RheumatologyDepartment of Medicine, The University of Illinois at ChicagoChicagoILUSA
| |
Collapse
|
27
|
Kaplan MJ. Targeting the Myddosome in Systemic Autoimmunity: Ready for Prime Time? Arthritis Rheumatol 2021; 73:2163-2165. [PMID: 34424598 DOI: 10.1002/art.41951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Mariana J Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| |
Collapse
|
28
|
Huang J, Fu X, Chen X, Li Z, Huang Y, Liang C. Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis. Front Immunol 2021; 12:686155. [PMID: 34305919 PMCID: PMC8299711 DOI: 10.3389/fimmu.2021.686155] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic poly-articular chronic autoimmune joint disease that mainly damages the hands and feet, which affects 0.5% to 1.0% of the population worldwide. With the sustained development of disease-modifying antirheumatic drugs (DMARDs), significant success has been achieved for preventing and relieving disease activity in RA patients. Unfortunately, some patients still show limited response to DMARDs, which puts forward new requirements for special targets and novel therapies. Understanding the pathogenetic roles of the various molecules in RA could facilitate discovery of potential therapeutic targets and approaches. In this review, both existing and emerging targets, including the proteins, small molecular metabolites, and epigenetic regulators related to RA, are discussed, with a focus on the mechanisms that result in inflammation and the development of new drugs for blocking the various modulators in RA.
Collapse
Affiliation(s)
- Jie Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xuekun Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xinxin Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuhong Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
29
|
Chen Y, Sun D, Yang R, Lim J, Sondey C, Presland J, Rakhilina L, Addona G, Kariv I, Chen H. Establishing and Validating Cellular Functional Target Engagement Assay for Selective IRAK4 Inhibitor Discovery. SLAS DISCOVERY 2021; 26:1040-1054. [PMID: 34130529 DOI: 10.1177/24725552211021074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
One of the main reasons for the lack of drug efficacy in late-stage clinical trials is the lack of specific and selective target engagement. To increase the likelihood of success of new therapeutics, one approach is to conduct proximal target engagement testing during the early phases of preclinical drug discovery. To identify and optimize selective IRAK4 inhibitors, a kinase that has been implicated in multiple inflammatory and autoimmune diseases, we established an electrochemiluminescence (ECL)-based cellular endogenous IRAK1 activation assay as the most proximal functional evaluation of IRAK4 engagement to support structure-activity relationship (SAR) studies. Since IRAK1 activation is dependent on both the IRAK4 scaffolding function in Myddosome formation and IRAK4 kinase activity for signal transduction, this assay potentially captures inhibitors with different mechanisms of action. Data from this IRAK1 assay with compounds representing different structural classes showed statistically significant correlations when compared with results from both IRAK4 biochemical kinase activity and functional peripheral blood mononuclear cell (PBMC)-derived tumor necrosis factor α (TNFα) secretion assays, validating the biological relevancy of the IRAK1 target engagement as a biomarker of the IRAK4 activity. Plate uniformity and potency reproducibility evaluations demonstrated that this assay is amenable to high throughput. Using Bland-Altman assay agreement analysis, we demonstrated that incorporating such proximal pharmacological assessment of cellular target engagement to an in vitro screening funnel for SAR studies can prevent compound optimization toward off-target activity.
Collapse
Affiliation(s)
- Yiping Chen
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Dongyu Sun
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Ruojing Yang
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Jongwon Lim
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Christopher Sondey
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Jeremy Presland
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Larissa Rakhilina
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - George Addona
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Ilona Kariv
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Hongmin Chen
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| |
Collapse
|
30
|
Liu T, Liu S, Zhou X. Innate Immune Responses and Pulmonary Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:53-71. [PMID: 34019263 DOI: 10.1007/978-3-030-68748-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Innate immunity is the first defense line of the host against various infectious pathogens, environmental insults, and other stimuli causing cell damages. Upon stimulation, pattern recognition receptors (PRRs) act as sensors to activate innate immune responses, containing NF-κB signaling, IFN response, and inflammasome activation. Toll-like receptors (TLRs), retinoic acid-inducible gene I-like receptors (RLRs), NOD-like receptors (NLRs), and other nucleic acid sensors are involved in innate immune responses. The activation of innate immune responses can facilitate the host to eliminate pathogens and maintain tissue homeostasis. However, the activity of innate immune responses needs to be tightly controlled to ensure the optimal intensity and duration of activation under various contexts. Uncontrolled innate immune responses can lead to various disorders associated with aberrant inflammatory response, including pulmonary diseases such as COPD, asthma, and COVID-19. In this chapter, we will have a broad overview of how innate immune responses function and the regulation and activation of innate immune response at molecular levels as well as their contribution to various pulmonary diseases. A better understanding of such association between innate immune responses and pulmonary diseases may provide potential therapeutic strategies.
Collapse
Affiliation(s)
- Tao Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Siqi Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Li Yim AYF, Ferrero E, Maratou K, Lewis HD, Royal G, Tough DF, Larminie C, Mannens MMAM, Henneman P, de Jonge WJ, van de Sande MGH, Gerlag DM, Prinjha RK, Tak PP. Novel Insights Into Rheumatoid Arthritis Through Characterization of Concordant Changes in DNA Methylation and Gene Expression in Synovial Biopsies of Patients With Differing Numbers of Swollen Joints. Front Immunol 2021; 12:651475. [PMID: 33968050 PMCID: PMC8100206 DOI: 10.3389/fimmu.2021.651475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022] Open
Abstract
In this study, we sought to characterize synovial tissue obtained from individuals with arthralgia and disease-specific auto-antibodies and patients with established rheumatoid arthritis (RA), by applying an integrative multi-omics approach where we investigated differences at the level of DNA methylation and gene expression in relation to disease pathogenesis. We performed concurrent whole-genome bisulphite sequencing and RNA-Sequencing on synovial tissue obtained from the knee and ankle from 4 auto-antibody positive arthralgia patients and thirteen RA patients. Through multi-omics factor analysis we observed that the latent factor explaining the variance in gene expression and DNA methylation was associated with Swollen Joint Count 66 (SJC66), with patients with SJC66 of 9 or more displaying separation from the rest. Interrogating these observed differences revealed activation of the immune response as well as dysregulation of cell adhesion pathways at the level of both DNA methylation and gene expression. We observed differences for 59 genes in particular at the level of both transcript expression and DNA methylation. Our results highlight the utility of genome-wide multi-omics profiling of synovial samples for improved understanding of changes associated with disease spread in arthralgia and RA patients, and point to novel candidate targets for the treatment of the disease.
Collapse
Affiliation(s)
- Andrew Y. F. Li Yim
- R&D GlaxoSmithKline, Stevenage, United Kingdom
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | | | | | | | | | | | - Marcel M. A. M. Mannens
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Peter Henneman
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Department of Surgery, University Clinic of Bonn, Bonn, Germany
| | - Marleen G. H. van de Sande
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam Institute for Infection & Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | | | - Paul P. Tak
- R&D GlaxoSmithKline, Stevenage, United Kingdom
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam Institute for Infection & Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Department of Rheumatology, Ghent University, Ghent, Belgium
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
32
|
Boutet MA, Courties G, Nerviani A, Le Goff B, Apparailly F, Pitzalis C, Blanchard F. Novel insights into macrophage diversity in rheumatoid arthritis synovium. Autoimmun Rev 2021; 20:102758. [PMID: 33476818 DOI: 10.1016/j.autrev.2021.102758] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease affecting joints and causing progressive damage and disability. Macrophages are of critical importance in the initiation and perpetuation of synovitis in RA, they can function as antigen presenting cells leading to T-cell dependent B-cell activation, assume a variety of inflammatory cell states with the production of destructive cytokines, but also contribute to tissue homeostasis/repair. The recent development of high-throughput technologies, including bulk and single cells RNA-sequencing, has broadened our understanding of synovial cell diversity, and opened novel perspectives to the discovery of new potential therapeutic targets in RA. In this review, we will focus on the relationship between the synovial macrophage infiltration and clinical disease severity and response to treatment. We will then provide a state-of-the-art picture of the biological roles of synovial macrophages and distinct macrophage subsets described in RA. Finally, we will review the effects of approved conventional and biologic drugs on the synovial macrophage component and highlight the therapeutic potential of future strategies to re-program macrophage phenotypes in RA.
Collapse
Affiliation(s)
- Marie-Astrid Boutet
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Gabriel Courties
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France.
| | - Alessandra Nerviani
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Benoit Le Goff
- INSERM UMR1238, Bone Sarcoma and Remodelling of Calcified Tissues, Nantes University, Nantes, France; Rheumatology Department, Nantes University Hospital, Nantes, France.
| | | | - Costantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Frédéric Blanchard
- INSERM UMR1238, Bone Sarcoma and Remodelling of Calcified Tissues, Nantes University, Nantes, France.
| |
Collapse
|
33
|
Zheng W, Chu Q, Xu T. Long noncoding RNA IRL regulates NF-κB-mediated immune responses through suppression of miR-27c-3p-dependent IRAK4 downregulation in teleost fish. J Biol Chem 2021; 296:100304. [PMID: 33465375 PMCID: PMC7949060 DOI: 10.1016/j.jbc.2021.100304] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
Growing pieces of evidence show that the long noncoding RNAs (lncRNAs) as new regulators participate in the regulation of various physiological and pathological processes. The study of lncRNA in lower invertebrates is still unclear compared with that in mammals. Here, we identified a novel lncRNA, termed IRAK4-related lncRNA (IRL), as a key regulator for innate immunity in teleost fish. We find that miR-27c-3p inhibits IRAK4 expression and thus weakens the NF-κB-mediated signaling pathway. Furthermore, the Gram-negative bacterium Vibrio anguillarum and lipopolysaccharide significantly upregulated host lncRNA IRL expression. Results indicate that IRL functions as a competing endogenous RNA for miR-27c-3p to regulate protein abundance of IRAK4; thus, invading microorganisms are eliminated and immune responses are promoted. Our study also demonstrates the regulation mechanism that lncRNA IRL can competitively adsorb miRNA to regulate the miR-27c-3p/IRAK4 axis that is widespread in teleost fish.
Collapse
Affiliation(s)
- Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qing Chu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|