1
|
Sarott RC, Gourisankar S, Karim B, Nettles S, Yang H, Dwyer BG, Simanauskaite JM, Tse J, Abuzaid H, Krokhotin A, Zhang T, Hinshaw SM, Green MR, Crabtree GR, Gray NS. Relocalizing transcriptional kinases to activate apoptosis. Science 2024; 386:eadl5361. [PMID: 39361741 DOI: 10.1126/science.adl5361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/15/2024] [Indexed: 10/05/2024]
Abstract
Kinases are critical regulators of cellular function that are commonly implicated in the mechanisms underlying disease. Most drugs that target kinases are molecules that inhibit their catalytic activity, but here we used chemically induced proximity to convert kinase inhibitors into activators of therapeutic genes. We synthesized bivalent molecules that link ligands of the transcription factor B cell lymphoma 6 (BCL6) to inhibitors of cyclin-dependent kinases (CDKs). These molecules relocalized CDK9 to BCL6-bound DNA and directed phosphorylation of RNA polymerase II. The resulting expression of pro-apoptotic, BCL6-target genes caused killing of diffuse large B cell lymphoma cells and specific ablation of the BCL6-regulated germinal center response. Genomics and proteomics corroborated a gain-of-function mechanism in which global kinase activity was not inhibited but rather redirected. Thus, kinase inhibitors can be used to context-specifically activate transcription.
Collapse
Affiliation(s)
- Roman C Sarott
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Sai Gourisankar
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Basel Karim
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Sabin Nettles
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Haopeng Yang
- Department of Lymphoma & Myeloma, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Brendan G Dwyer
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Jason Tse
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Hind Abuzaid
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Andrey Krokhotin
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Stephen M Hinshaw
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Michael R Green
- Department of Lymphoma & Myeloma, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gerald R Crabtree
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Epigenetic regulation of B cells and its role in autoimmune pathogenesis. Cell Mol Immunol 2022; 19:1215-1234. [PMID: 36220996 PMCID: PMC9622816 DOI: 10.1038/s41423-022-00933-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
B cells play a pivotal role in the pathogenesis of autoimmune diseases. Although previous studies have shown many genetic polymorphisms associated with B-cell activation in patients with various autoimmune disorders, progress in epigenetic research has revealed new mechanisms leading to B-cell hyperactivation. Epigenetic mechanisms, including those involving histone modifications, DNA methylation, and noncoding RNAs, regulate B-cell responses, and their dysregulation can contribute to the pathogenesis of autoimmune diseases. Patients with autoimmune diseases show epigenetic alterations that lead to the initiation and perpetuation of autoimmune inflammation. Moreover, many clinical and animal model studies have shown the promising potential of epigenetic therapies for patients. In this review, we present an up-to-date overview of epigenetic mechanisms with a focus on their roles in regulating functional B-cell subsets. Furthermore, we discuss epigenetic dysregulation in B cells and highlight its contribution to the development of autoimmune diseases. Based on clinical and preclinical evidence, we discuss novel epigenetic biomarkers and therapies for patients with autoimmune disorders.
Collapse
|