1
|
Strzelczyk J, Bocian-Jastrzębska A, Strzelczyk JK, Wójcik-Giertuga M, Biernacki K, Kajdaniuk D, Kos-Kudła B. Adipokines in Neuroendocrine Tumors: An Evaluation of the Serum Levels of Ghrelin and Leptin. Int J Mol Sci 2024; 25:9820. [PMID: 39337308 PMCID: PMC11432421 DOI: 10.3390/ijms25189820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Neuroendocrine tumors (NETs) are a heterogeneous group of tumors that are characteristically different from other malignancies. The difference is not only in the prognosis, which is usually more favorable in such patients, but also in the high clinical progression of the disease, where NET patients do not experience the cachexia typical of other malignancies. The purposes of this study were to evaluate the ghrelin and leptin levels in a group of patients diagnosed with gastroenteropancreatic neuroendocrine tumors (GEP-NETs) and bronchopulmonary neuroendocrine tumors (BP-NETs) and to analyze the relationship between the body mass index (BMI), cachexia and selected NET markers. The study group comprised 52 patients with GEP-NETs and BP-NETs, while the controls comprised 67 healthy volunteers. The ghrelin and leptin concentrations were determined in both groups. The concentrations of chromogranin A, serotonin, 5-hydroxyindoleacetic acid (5-HIAA), total cholesterol, triglycerides and glucose were determined in the study group. Characteristics of the study group and of the controls were defined by age, sex and BMI, and the effects of these factors on the ghrelin and leptin concentrations were assessed. The data obtained were subject to statistical analysis. The study cohort showed higher levels of ghrelin as compared to the controls (142.31 ± 26.00 vs. 121.49 ± 35.45, p = 0.016), and no statistical difference in the levels of leptin (11.15 ± 9.6 vs. 12.94 ± 20.30, p = 0.439) were observed. Significantly lower levels of leptin were found in patients with the small intestine primary location, as compared to individuals with primary locations in the lungs and the pancreas (4.9 ± 6.49 vs. 16.97 ± 15.76, p = 0.045, and 4.9 ± 6.49 vs. 12.89 ± 8.56, p = 0.016, respectively). A positive correlation was observed between the leptin levels and the BMIs in both the study group (rS = 0.33, p = 0.016) and the controls (rS = 0.41, p = 0.001). The study group showed a negative correlation between the leptin levels and 5-HIAA (rS = -0.32, p = 0.026) and a negative correlation between the leptin levels and Ki-67 (rS = -0.33, p = 0.018). The control group showed negative correlations between the ghrelin and the volunteer age (rS = -0.41, p = 0.008), the leptin and the volunteer age (rS = -0.44, p < 0.001), the leptin and total cholesterol (rS = -0.24, p < 0.049) as well as the leptin and triglycerides (rS = -0.33, p < 0.006). The current study emphasized the importance of the markers' determination, where ghrelin appears as a valuable diagnostic biomarker in NETs, probably responsible for maintaining a normal BMI, despite the progression of the disease.
Collapse
Affiliation(s)
- Janusz Strzelczyk
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-514 Katowice, Poland; (A.B.-J.); (M.W.-G.); (B.K.-K.)
| | - Agnes Bocian-Jastrzębska
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-514 Katowice, Poland; (A.B.-J.); (M.W.-G.); (B.K.-K.)
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (J.K.S.); (K.B.)
| | - Monika Wójcik-Giertuga
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-514 Katowice, Poland; (A.B.-J.); (M.W.-G.); (B.K.-K.)
| | - Krzysztof Biernacki
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (J.K.S.); (K.B.)
| | - Dariusz Kajdaniuk
- Department of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland;
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-514 Katowice, Poland; (A.B.-J.); (M.W.-G.); (B.K.-K.)
| |
Collapse
|
2
|
Ma Y, Yan Q, Wang P, Guo W, Yu L. Therapeutic potential of ghrelin/GOAT/GHSR system in gastrointestinal disorders. Front Nutr 2024; 11:1422431. [PMID: 39246401 PMCID: PMC11380557 DOI: 10.3389/fnut.2024.1422431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Ghrelin, a peptide primarily secreted in the stomach, acts via the growth hormone secretagogue receptor (GHSR). It regulates several physiological processes, such as feeding behavior, energy homeostasis, glucose and lipid metabolism, cardiovascular function, bone formation, stress response, and learning. GHSR exhibits significant expression within the central nervous system. However, numerous murine studies indicate that ghrelin is limited in its ability to enter the brain from the bloodstream and is primarily confined to specific regions, such as arcuate nucleus (ARC) and median eminence (ME). Nevertheless, the central ghrelin system plays an essential role in regulating feeding behavior. Furthermore, the role of vagal afferent fibers in regulating the functions of ghrelin remains a major topic of discussion among researchers. In recent times, numerous studies have elucidated the substantial therapeutic potential of ghrelin in most gastrointestinal (GI) diseases. This has led to the development of numerous pharmaceutical agents that target the ghrelin system, some of which are currently under examination in clinical trials. Furthermore, ghrelin is speculated to serve as a promising biomarker for GI tumors, which indicates its potential use in tumor grade and stage evaluation. This review presents a summary of recent findings in research conducted on both animals and humans, highlighting the therapeutic properties of ghrelin system in GI disorders.
Collapse
Affiliation(s)
- Yunxiao Ma
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qihui Yan
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ping Wang
- Department of Otolaryngology-Head and Neck Surgery of First Hospital of Jilin University, Jilin University, Changchun, China
| | - Weiying Guo
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lu Yu
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
3
|
Moreno-Moreno P, Ibáñez-Costa A, Venegas-Moreno E, Fuentes-Fayos AC, Alhambra-Expósito MR, Fajardo-Montañana C, García-Martínez A, Dios E, Vázquez-Borrego MC, Remón-Ruiz P, Cámara R, Lamas C, Carlos Padillo-Cuenca J, Solivera J, Cano DA, Gahete MD, Herrera-Martínez AD, Picó A, Soto-Moreno A, Gálvez-Moreno MÁ, Castaño JP, Luque RM. Integrative Clinical, Radiological, and Molecular Analysis for Predicting Remission and Recurrence of Cushing Disease. J Clin Endocrinol Metab 2022; 107:e2938-e2951. [PMID: 35312002 DOI: 10.1210/clinem/dgac172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Adrenocorticotropin (ACTH)-secreting pituitary tumors (ACTHomas) are associated with severe comorbidities and increased mortality. Current treatments mainly focus on remission and prevention of persistent disease and recurrence. However, there are still no useful biomarkers to accurately predict the clinical outcome after surgery, long-term remission, or disease relapse. OBJECTIVES This work aimed to identify clinical, biochemical, and molecular markers for predicting long-term clinical outcome and remission in ACTHomas. METHODS A retrospective multicenter study was performed with 60 ACTHomas patients diagnosed between 2004 and 2018 with at least 2 years' follow-up. Clinical/biochemical variables were evaluated yearly. Molecular expression profile of the somatostatin/ghrelin/dopamine regulatory systems components and of key pituitary factors and proliferation markers were evaluated in tumor samples after the first surgery. RESULTS Clinical variables including tumor size, time until diagnosis/first surgery, serum prolactin, and postsurgery cortisol levels were associated with tumor remission and relapsed disease. The molecular markers analyzed were distinctly expressed in ACTHomas, with some components (ie, SSTR1, CRHR1, and MKI67) showing instructive associations with recurrence and/or remission. Notably, an integrative model including selected clinical variables (tumor size/postsurgery serum cortisol), and molecular markers (SSTR1/CRHR1) can accurately predict the clinical evolution and remission of patients with ACTHomas, generating a receiver operating characteristic curve with an area under the curve of 1 (P < .001). CONCLUSION This study demonstrates that the combination of a set of clinical and molecular biomarkers in ACTHomas is able to accurately predict the clinical evolution and remission of patients. Consequently, the postsurgery molecular profile represents a valuable tool for clinical evaluation and follow-up of patients with ACTHomas.
Collapse
Affiliation(s)
- Paloma Moreno-Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Service of Endocrinology and Nutrition, IMIBIC, HURS, 14004 Cordoba, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Eva Venegas-Moreno
- Unidad de Gestión de Endocrinología y Nutrición. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - María R Alhambra-Expósito
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Service of Endocrinology and Nutrition, IMIBIC, HURS, 14004 Cordoba, Spain
| | - Carmen Fajardo-Montañana
- Department of Endocrinology, Hospital Universitario de La Ribera, Alzira, 46600, Valencia, Spain
| | - Araceli García-Martínez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
| | - Elena Dios
- Unidad de Gestión de Endocrinología y Nutrición. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Mari C Vázquez-Borrego
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Pablo Remón-Ruiz
- Unidad de Gestión de Endocrinología y Nutrición. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Rosa Cámara
- Department of Endocrinology and Nutrition, Polytechnic University Hospital La Fe, 46026, Valencia, Spain
| | - Cristina Lamas
- Department of Endocrinology and Nutrition, Albacete University Hospital, 02006, Albacete, Spain
| | - José Carlos Padillo-Cuenca
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Service of Endocrinology and Nutrition, IMIBIC, HURS, 14004 Cordoba, Spain
| | | | - David A Cano
- Unidad de Gestión de Endocrinología y Nutrición. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Aura D Herrera-Martínez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Service of Endocrinology and Nutrition, IMIBIC, HURS, 14004 Cordoba, Spain
| | - Antonio Picó
- Department of Endocrinology and Nutrition, Alicante General University Hospital. Institute for Health and Biomedical Research (ISABIAL). University Miguel Hernandez, CIBER Rare Diseases, 03010, Alicante, Spain
| | - Alfonso Soto-Moreno
- Unidad de Gestión de Endocrinología y Nutrición. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - María Ángeles Gálvez-Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Service of Endocrinology and Nutrition, IMIBIC, HURS, 14004 Cordoba, Spain
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| |
Collapse
|
4
|
Role of the Ghrelin System in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23105380. [PMID: 35628187 PMCID: PMC9141034 DOI: 10.3390/ijms23105380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
The ghrelin system contains several components (e.g., ghrelin with growing number of alternative peptides, growth hormone secretagogue receptors (GHS-Rs), and ghrelin-O-acyl-transferase (GOAT) and participates in regulation of a number of key processes of gastrointestinal (GI) tract cancer progression, including cell proliferation, migration, invasion, apoptosis, inflammation, and angiogenesis. However, its exact role in promoting or inhibiting cancer progression is still unclear. Colorectal cancer (CRC) is one of the most common human malignancies worldwide. Molecular studies suggest an autocrine/paracrine mechanism for the secretion of ghrelin in colorectal carcinogenesis and its contribution to its initial stages. However, the signalling pathways of CRC development involving the ghrelin system are poorly understood. Potential mechanisms of colon carcinogenesis involving components of the ghrelin system were previously described in an animal model and in in vitro studies. However, the diagnostic–prognostic role of serum ghrelin concentrations, tissue expression, or genetic changes of this system in various stages of CRC progression remains an open case. Thus, the aim of this study is to discuss the role of the ghrelin system in colon carcinogenesis, diagnostics and CRC prognostics, as well as the results of studies on the use of ghrelin and its analogues in the therapy of CRC-related syndromes (e.g., cachexia and sarcopenia).
Collapse
|
5
|
Ghrelin and Cancer: Examining the Roles of the Ghrelin Axis in Tumor Growth and Progression. Biomolecules 2022; 12:biom12040483. [PMID: 35454071 PMCID: PMC9032665 DOI: 10.3390/biom12040483] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
Ghrelin, a hormone produced and secreted from the stomach, is prim arily known as an appetite stimulant. Recently, it has emerged as a potential regulator/biomarker of cancer progression. Inconsistent results on this subject make this body of literature difficult to interpret. Here, we attempt to identify commonalities in the relationships between ghrelin and various cancers, and summarize important considerations for future research. The main players in the ghrelin family axis are unacylated ghrelin (UAG), acylated ghrelin (AG), the enzyme ghrelin O-acyltransferase (GOAT), and the growth hormone secretagogue receptor (GHSR). GOAT is responsible for the acylation of ghrelin, after which ghrelin can bind to the functional ghrelin receptor GHSR-1a to initiate the activation cascade. Splice variants of ghrelin also exist, with the most prominent being In1-ghrelin. In this review, we focus primarily on the potential of In1-ghrelin as a biomarker for cancer progression, the unique characteristics of UAG and AG, the importance of the two known receptor variants GHSR-1a and 1b, as well as the possible mechanisms through which the ghrelin axis acts. Further understanding of the role of the ghrelin axis in tumor cell proliferation could lead to the development of novel therapeutic approaches for various cancers.
Collapse
|
6
|
Herrera-Martínez Y, Alzas Teomiro C, León Idougourram S, Molina Puertas MJ, Calañas Continente A, Serrano Blanch R, Castaño JP, Gálvez Moreno MÁ, Gahete MD, Luque RM, Herrera-Martínez AD. Sarcopenia and Ghrelin System in the Clinical Outcome and Prognosis of Gastroenteropancreatic Neuroendocrine Neoplasms. Cancers (Basel) 2021; 14:cancers14010111. [PMID: 35008278 PMCID: PMC8750458 DOI: 10.3390/cancers14010111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Malnutrition and sarcopenia affect clinical outcomes in cancer patients. Nutritional evaluation in patients with neuroendocrine neoplasms (NENs) is not routinely performed. Currently, the evaluation of sarcopenia using CT scans is the gold standard in cancer patients, additionally, anthropometric, biochemical and molecular analysis of patients with gastroenteropancreatic NENs at diagnosis was perfomed. The expression levels of key ghrelin system components were assessed in 63 tumor samples. Results: Nutritional parameters were similar in GEP-NEN tumors of different origin. Relapsed disease was associated with decreased BMI. Patients who presented with weight loss at diagnosis had significantly lower overall survival (108 (25–302) vs. 263 (79–136) months). Ghrelin O-acyltransferase (GOAT) enzyme expression was higher in these patients. The prevalence of sarcopenia using CT images reached 87.2%. Mortality was observed only in patients with sarcopenia. Muscle evaluation was correlated with biochemical parameters but not with the expression of ghrelin system components. Conclusion: Survival is related to the nutritional status of patients with GEP-NENs and also to the molecular expression of some relevant ghrelin system components. Routine nutritional evaluation should be performed in these patients, in order to prescribe appropriate nutritional support, when necessary, for increasing quality of life and improving clinical outcomes. Abstract Background: Malnutrition and sarcopenia affect clinical outcomes and treatment response in cancer patients. Patients with neuroendocrine neoplasms (NENs) may present with additional symptoms related to tumor localization in the gastrointestinal tract and hormone secretion, increasing the risk and effects of sarcopenia. Aim: To explore the presence of malnutrition and sarcopenia in gastroenteropancreatic (GEP)-NEN patients, their relation to tumor characteristics, patient outcomes, survival and the molecular expression of ghrelin system components in the tumor. Patients and methods: One-hundred-and-four patients were included. Anthropometric, biochemical and CT-scans at diagnosis were evaluated. The expression levels of key ghrelin system components were assessed in 63 tumor samples. Results: Nutritional parameters were similar in GEP-NEN tumors of different origin. Relapsed disease was associated with decreased BMI. Patients who presented with weight loss at diagnosis had significantly lower overall survival (108 (25–302) vs. 263 (79–136) months). Ghrelin O-acyltransferase (GOAT) enzyme expression was higher in these patients. The prevalence of sarcopenia using CT images reached 87.2%. Mortality was observed only in patients with sarcopenia. Muscle evaluation was correlated with biochemical parameters but not with the expression of ghrelin system components. Conclusion: Survival is related to the nutritional status of patients with GEP-NENs and also to the molecular expression of some relevant ghrelin system components. Routine nutritional evaluation should be performed in these patients, in order to prescribe appropriate nutritional support, when necessary, for increasing quality of life and improving clinical outcomes.
Collapse
Affiliation(s)
| | - Carlos Alzas Teomiro
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Cordova, Spain
| | - Soraya León Idougourram
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Cordova, Spain
| | - María José Molina Puertas
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Cordova, Spain
| | - Alfonso Calañas Continente
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Cordova, Spain
| | - Raquel Serrano Blanch
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Medical Oncology Service, Reina Sofia University Hospital, 14004 Cordova, Spain
| | - Justo P. Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14014 Cordova, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 14004 Cordova, Spain
| | - María Ángeles Gálvez Moreno
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Cordova, Spain
| | - Manuel D. Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14014 Cordova, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 14004 Cordova, Spain
| | - Raúl M. Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14014 Cordova, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 14004 Cordova, Spain
| | - Aura D. Herrera-Martínez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Cordova, Spain
- Correspondence:
| |
Collapse
|
7
|
H. pylori effects on ghrelin axis: Preliminary change in gastric pathogenesis. Microb Pathog 2021; 161:105262. [PMID: 34695557 DOI: 10.1016/j.micpath.2021.105262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022]
Abstract
Ghrelin and its receptors are present in the stomach, suggesting that the ghrelin axis plays an essential role in gastrointestinal complications. This investigation aimed to explore the effects of H. pylori infection and gastritis on serum ghrelin and ghrelin axis gene expression. In this study, we enrolled 68 adult ambulatory people referred for upper gastrointestinal endoscopy. The individuals were classified into three groups based on H. pylori infection and gastritis. Total serum ghrelin and tissue gene expression were tested with ELISA and quantitative RT-PCR, respectively. Serum ghrelin and mRNA expression were significantly lower in H. pylori-positive with gastritis subjects compared with both H. pylori-negative with and without gastritis. Growth hormone secretagogue receptor1a mRNA expression was not different between groups while GHSR1b expression was significantly higher in patients with H. pylori infection and gastritis. We propose the ghrelin axis intermediaries, such as GHSR1b, as a potential clinical target for gastric disorders.
Collapse
|
8
|
Tegshee B, Kondo K, Soejima S, Muguruma K, Tsuboi M, Kajiura K, Kawakami Y, Kawakita N, Toba H, Yoshida M, Takizawa H, Tangoku A. GHSR methylation-dependent expression of a variant ligand and receptor of the ghrelin system induces thymoma tumorigenesis. Oncol Lett 2021; 22:793. [PMID: 34630704 PMCID: PMC8477069 DOI: 10.3892/ol.2021.13054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/19/2021] [Indexed: 12/17/2022] Open
Abstract
Our previous study reported that the DNA methylation of growth hormone secretagogue receptor (GHSR) was significantly higher in thymoma or thymic carcinoma (TC) than in normal thymic tissue samples. Thymic epithelial tumors (TETs) with higher GHSR DNA methylation were associated with significantly worse prognosis than those with lower levels of DNA methylation. Diversified components of the ghrelin-GHSR axis may exert opposing effects in cancer progression, depending on the cancer type in question. However, the precise function of the axis remains unclear. In the present study, the mRNA expression of five key components of the ghrelin system [native ligand ghrelin, variant ligand In-1 ghrelin, native receptor GHSR1a, variant receptor GHSR1b and acylation enzyme ghrelin O-acyltransferase (GOAT)] were examined in 58 TET samples by reverse transcription-quantitative PCR, and protein expression of GHSR1a and GHSR1b was assessed in 20 TETs using immunohistochemistry. The results revealed that In-1 ghrelin, GHSR1b (variant forms) and GOAT were more strongly expressed in thymoma compared with thymic-adjacent tissue. By contrast, no significant differences were observed in the expression of ghrelin and GHSR1a (native forms) between thymoma and thymic tissue. The mRNA expression of In-1 ghrelin and GHSR1b (variant forms) was positively associated with GHSR methylation in thymoma tissue samples. However, a relationship was not found between ghrelin, GHSR1a or GOAT expression (native forms) and GHSR methylation in thymoma. Immunohistochemical analysis revealed that mRNA expression of GHSR1a and GHSR1b generally correlated with expression of the corresponding protein, and that the expression of GHSR1b was increased in advanced-stage TETs. These results indicate that the DNA methylation of GHSR is associated with a shift from native expression (ghrelin and GHSR1a) to variant expression (In-1 ghrelin and GHSR1b), which induces the tumorigenesis of thymoma, but not TC.
Collapse
Affiliation(s)
- Bilguun Tegshee
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima 770-8509, Japan
| | - Kazuya Kondo
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima 770-8509, Japan
| | - Shiho Soejima
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima 770-8509, Japan
| | - Kyoka Muguruma
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima 770-8509, Japan
| | - Mitsuhiro Tsuboi
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Koichiro Kajiura
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yukikiyo Kawakami
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Naoya Kawakita
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hiroaki Toba
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Mitsuteru Yoshida
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hiromitsu Takizawa
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Akira Tangoku
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
9
|
Spiridon IA, Ciobanu DGA, Giușcă SE, Căruntu ID. Ghrelin and its role in gastrointestinal tract tumors (Review). Mol Med Rep 2021; 24:663. [PMID: 34296307 PMCID: PMC8335721 DOI: 10.3892/mmr.2021.12302] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Ghrelin, an orexigenic hormone, is a peptide that binds to the growth hormone secretagogue receptor; it is secreted mainly by enteroendocrine cells in the oxyntic glands of the stomach. Ghrelin serves a role in both local and systemic physiological processes, and is implicated in various pathologies, including neoplasia, with tissue expression in several types of malignancies in both in vitro and in vivo studies. However, the precise implications of the ghrelin axis in metastasis, invasion and cancer progression regulation has yet to be established. In the case of gastrointestinal (GI) tract malignancies, ghrelin has shown potential to become a prognostic factor or even a therapeutic target, although data in the literature are inconsistent and unsystematic, with reports untailored to a specific histological subtype of cancer or a particular localization. The evaluation of immunohistochemical expression shows a limited outlook owing to the low number of cases analyzed, and in vivo analyses have conflicting data regarding differences in ghrelin serum levels in patients with cancer. The aim of this review was to examine the relationship between ghrelin and GI tract malignancies to demonstrate the inconsistencies in current results and to highlight its clinical significance in the outcome of these patients.
Collapse
Affiliation(s)
- Irene Alexandra Spiridon
- Department of Pathology, 'Grigore T. Popa' University of Medicine and Pharmacy, Iași 700115, Romania
| | | | - Simona Eliza Giușcă
- Department of Pathology, 'Grigore T. Popa' University of Medicine and Pharmacy, Iași 700115, Romania
| | - Irina Draga Căruntu
- Department of Histology, 'Grigore T. Popa' University of Medicine and Pharmacy, Iași 700115, Romania
| |
Collapse
|
10
|
Correct Identification of Cell of Origin May Explain Many Aspects of Cancer: The Role of Neuroendocrine Cells as Exemplified from the Stomach. Int J Mol Sci 2020; 21:ijms21165751. [PMID: 32796591 PMCID: PMC7461029 DOI: 10.3390/ijms21165751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Cancers are believed to originate from stem cells. Previously, the hypothesis was that tumors developed due to dedifferentiation of mature cells. We studied the regulation of gastric acid secretion and showed that gastrin through the gastrin receptor stimulates enterochromaffin-like (ECL) cell histamine release and proliferation. In animal and human studies, we and others showed that long-term hypergastrinemia results in ECL cell-derived tumor through a sequence of hyperplasia, dysplasia, neuroendocrine tumors (NETs), and possibly neuroendocrine carcinomas (NECs) and adenocarcinomas of diffuse type. Perhaps, other cancers may also have their origin in differentiated cells. Knowledge of the growth regulation of the cell of origin is important in cancer prophylaxis and treatment. Physiology plays a central role in carcinogenesis through hormones and other growth factors. Every cell division implies a small risk of mutation; thus mitogens are also mutagens. Moreover, metastasis of slow proliferating cells may also explain so-called tumor dormancy and late recurrence.
Collapse
|