1
|
Kasianchuk N, Dobrowolska K, Harkava S, Bretcan A, Zarębska-Michaluk D, Jaroszewicz J, Flisiak R, Rzymski P. Gene-Editing and RNA Interference in Treating Hepatitis B: A Review. Viruses 2023; 15:2395. [PMID: 38140636 PMCID: PMC10747710 DOI: 10.3390/v15122395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The hepatitis B virus (HBV) continues to cause substantial health and economic burdens, and its target of elimination may not be reached in 2030 without further efforts in diagnostics, non-pharmaceutical prevention measures, vaccination, and treatment. Current therapeutic options in chronic HBV, based on interferons and/or nucleos(t)ide analogs, suppress the virus replication but do not eliminate the pathogen and suffer from several constraints. This paper reviews the progress on biotechnological approaches in functional and definitive HBV treatments, including gene-editing tools, i.e., zinc-finger proteins, transcription activator-like effector nucleases, and CRISPR/Cas9, as well as therapeutics based on RNA interference. The advantages and challenges of these approaches are also discussed. Although the safety and efficacy of gene-editing tools in HBV therapies are yet to be demonstrated, they show promise for the revitalization of a much-needed advance in the field and offer viral eradication. Particular hopes are related to CRISPR/Cas9; however, therapeutics employing this system are yet to enter the clinical testing phases. In contrast, a number of candidates based on RNA interference, intending to confer a functional cure, have already been introduced to human studies. However, larger and longer trials are required to assess their efficacy and safety. Considering that prevention is always superior to treatment, it is essential to pursue global efforts in HBV vaccination.
Collapse
Affiliation(s)
- Nadiia Kasianchuk
- Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | | | - Sofiia Harkava
- Junior Academy of Sciences of Ukraine, Regional Branch in Dnipro, 49000 Dnipro, Ukraine;
| | - Andreea Bretcan
- National College “Ienăchiță Văcărescu”, 130016 Târgoviște, Romania;
| | - Dorota Zarębska-Michaluk
- Department of Infectious Diseases and Allergology, Jan Kochanowski University, 25-317 Kielce, Poland;
| | - Jerzy Jaroszewicz
- Department of Infectious Diseases and Hepatology, Medical University of Silesia in Katowice, 41-902 Bytom, Poland;
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, 15-540 Białystok, Poland;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| |
Collapse
|
2
|
Yang L, Zhou D, Martin K, Wu J, Chen M, Lu M, Yang D, Protzer U, Roggendorf M, Song J. Aborted infection of human sodium taurocholate cotransporting polypeptide (hNTCP) expressing woodchuck hepatocytes with hepatitis B virus (HBV). Virus Genes 2023; 59:823-830. [PMID: 37728707 DOI: 10.1007/s11262-023-02031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Due to the limited host range of HBV, research progress has been hindered by the absence of a suitable animal model. The natural history of woodchuck hepatitis virus (WHV) infection in woodchuck closely mirrors that of HBV infection in human, making this species a promising candidate for establishing both in vivo and in vitro HBV infection models. Therefore, this animal may be a valuable species to evaluate HBV vaccines and anti-HBV drugs. A significant milestone in HBV and hepatitis D virus (HDV) infection is the discovery of sodium taurocholate cotransporting polypeptide (NTCP) as the functional receptor. In an effort to enhance susceptibility to HBV infection, we introduced hNTCP into the woodchuck hepatocytes by multiple approaches including transduction of vLentivirus-hNTCP in woodchuck hepatocytes, transfection of p-lentivirus-hNTCP-eGFP plasmids into these cells, as well as transduction of vAdenovirus-hNTCP-eGFP. Encouragingly, our findings demonstrated the successful introduction of hNTCP into woodchuck hepatocytes. However, it was observed that these hNTCP-expressing hepatocytes were only susceptible to HDV infection but not HBV. This suggests the presence of additional crucial factors mediating early-stage HBV infection that are subject to stringent species-specific restrictions.
Collapse
Affiliation(s)
- Lu Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Di Zhou
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kächele Martin
- Institute of Virology, Technische Universität München, Munich, Germany
| | - Jun Wu
- Department of Infectious Disease, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Mingfa Chen
- Department of Infectious Diseases, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital, Shenzhen University, Shenzhen, People's Republic of China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Disease, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München, Munich, Germany
| | | | - Jingjiao Song
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
3
|
Terasaki K, Kalveram B, Johnson KN, Juelich T, Smith JK, Zhang L, Freiberg AN, Makino S. Rift Valley fever virus 78kDa envelope protein attenuates virus replication in macrophage-derived cell lines and viral virulence in mice. PLoS Negl Trop Dis 2021; 15:e0009785. [PMID: 34516560 PMCID: PMC8460012 DOI: 10.1371/journal.pntd.0009785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/23/2021] [Accepted: 09/02/2021] [Indexed: 12/27/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus with a wide host range including ruminants and humans. RVFV outbreaks have had devastating effects on public health and the livestock industry in African countries. However, there is no approved RVFV vaccine for human use in non-endemic countries and no FDA-approved antiviral drug for RVFV treatment. The RVFV 78kDa protein (P78), which is a membrane glycoprotein, plays a role in virus dissemination in the mosquito host, but its biological role in mammalian hosts remains unknown. We generated an attenuated RVFV MP-12 strain-derived P78-High virus and a virulent ZH501 strain-derived ZH501-P78-High virus, both of which expressed a higher level of P78 and carried higher levels of P78 in the virion compared to their parental viruses. We also generated another MP-12-derived mutant virus (P78-KO virus) that does not express P78. MP-12 and P78-KO virus replicated to similar levels in fibroblast cell lines and Huh7 cells, while P78-High virus replicated better than MP-12 in Vero E6 cells, fibroblast cell lines, and Huh7 cells. Notably, P78-High virus and P78-KO virus replicated less efficiently and more efficiently, respectively, than MP-12 in macrophage cell lines. ZH501-P78-High virus also replicated poorly in macrophage cell lines. Our data further suggest that inefficient binding of P78-High virus to the cells led to inefficient virus internalization, low virus infectivity and reduced virus replication in a macrophage cell line. P78-High virus and P78-KO virus showed lower and higher virulence than MP-12, respectively, in young mice. ZH501-P78-High virus also exhibited lower virulence than ZH501 in mice. These data suggest that high levels of P78 expression attenuate RVFV virulence by preventing efficient virus replication in macrophages. Genetic alteration leading to increased P78 expression may serve as a novel strategy for the attenuation of RVFV virulence and generation of safe RVFV vaccines.
Collapse
Affiliation(s)
- Kaori Terasaki
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute of Human Infection and Immunity, The University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (KT); (SM)
| | - Birte Kalveram
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kendra N. Johnson
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Terry Juelich
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jennifer K. Smith
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lihong Zhang
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alexander N. Freiberg
- Institute of Human Infection and Immunity, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute of Human Infection and Immunity, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (KT); (SM)
| |
Collapse
|
4
|
Tenge VR, Murakami K, Salmen W, Lin SC, Crawford SE, Neill FH, Prasad BVV, Atmar RL, Estes MK. Bile Goes Viral. Viruses 2021; 13:998. [PMID: 34071855 PMCID: PMC8227374 DOI: 10.3390/v13060998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Laboratory cultivation of viruses is critical for determining requirements for viral replication, developing detection methods, identifying drug targets, and developing antivirals. Several viruses have a history of recalcitrance towards robust replication in laboratory cell lines, including human noroviruses and hepatitis B and C viruses. These viruses have tropism for tissue components of the enterohepatic circulation system: the intestine and liver, respectively. The purpose of this review is to discuss how key enterohepatic signaling molecules, bile acids (BAs), and BA receptors are involved in the replication of these viruses and how manipulation of these factors was useful in the development and/or optimization of culture systems for these viruses. BAs have replication-promoting activities through several key mechanisms: (1) affecting cellular uptake, membrane lipid composition, and endocytic acidification; (2) directly interacting with viral capsids to influence binding to cells; and (3) modulating the innate immune response. Additionally, expression of the Na+-taurocholate cotransporting polypeptide BA receptor in continuous liver cell lines is critical for hepatitis B virus entry and robust replication in laboratory culture. Viruses are capable of hijacking normal cellular functions, and understanding the role of BAs and BA receptors, components of the enterohepatic system, is valuable for expanding our knowledge on the mechanisms of norovirus and hepatitis B and C virus replication.
Collapse
Affiliation(s)
- Victoria R. Tenge
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (W.S.); (S.-C.L.); (S.E.C.); (F.H.N.); (B.V.V.P.); (R.L.A.)
| | - Kosuke Murakami
- Department of Virology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan;
| | - Wilhelm Salmen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (W.S.); (S.-C.L.); (S.E.C.); (F.H.N.); (B.V.V.P.); (R.L.A.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shih-Ching Lin
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (W.S.); (S.-C.L.); (S.E.C.); (F.H.N.); (B.V.V.P.); (R.L.A.)
| | - Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (W.S.); (S.-C.L.); (S.E.C.); (F.H.N.); (B.V.V.P.); (R.L.A.)
| | - Frederick H. Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (W.S.); (S.-C.L.); (S.E.C.); (F.H.N.); (B.V.V.P.); (R.L.A.)
| | - B. V. Venkataram Prasad
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (W.S.); (S.-C.L.); (S.E.C.); (F.H.N.); (B.V.V.P.); (R.L.A.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert L. Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (W.S.); (S.-C.L.); (S.E.C.); (F.H.N.); (B.V.V.P.); (R.L.A.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (W.S.); (S.-C.L.); (S.E.C.); (F.H.N.); (B.V.V.P.); (R.L.A.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Identification of Two Critical Neutralizing Epitopes in the Receptor Binding Domain of Hepatitis B Virus preS1. J Virol 2021; 95:JVI.01680-20. [PMID: 33298539 PMCID: PMC8092832 DOI: 10.1128/jvi.01680-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major public health problem. Human hepatocytes are infected with HBV via binding between the preS1 region in the large envelope protein of HBV and sodium taurocholate cotransporting polypeptide. Although several monoclonal antibodies (MAbs) that recognize the receptor binding domain in preS1 and neutralize HBV infection have been isolated, details of neutralizing epitopes are not understood. In this study, we generated 13 MAbs targeting the preS1 receptor binding domain from preS1-specific memory B cells derived from DNA immunized mice. The MAbs were classified into three groups according to the epitope regions, designated epitopes I-III. A virus neutralization assay revealed that MAbs recognizing epitopes I and III neutralized HBV infection, suggesting that these domains are critical epitopes for viral neutralization. In addition, a neutralization assay against multiple genotypes of HBV revealed that epitope I is a semi-pangenotypic neutralizing epitope, whereas epitope III is a genotype-specific epitope. We also showed that neutralizing MAbs against preS1 could neutralize HBV bearing vaccine-induced escape mutation. These findings provide insight into novel immunoprophylaxis for the prevention and treatment of HBV infection.IMPORTANCE The HBV preS1 2-47 aa region (preS1/2-47) is essential for virus binding with sodium taurocholate cotransporting polypeptide. Several MAbs targeting preS1/2-47 have been reported to neutralize HBV infection; however, which region in preS1/2-47 contains the critical neutralizing epitope for HBV infection is unclear. Here, we generated several MAbs targeting preS1/2-47 and found that MAbs recognizing the N- or C-terminus of preS1/2-47 remarkably neutralized HBV infection. We further confirmed the neutralizing activity of anti-preS1 MAbs against HBV with vaccine escape mutation. These data clarified the relationship between the antibody epitope and the virus neutralizing activity and also suggested the potential ability of a vaccine antigen containing the preS1 region to overcome the weakness of current HB vaccines comprising the small S protein.
Collapse
|
6
|
Ivics Z, Amberger M, Zahn T, Hildt E. [Immunotherapies for the treatment of chronic hepatitis B virus infections-an overview with a focus on CAR T cells]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:1357-1364. [PMID: 32995895 PMCID: PMC7647999 DOI: 10.1007/s00103-020-03223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/09/2020] [Indexed: 11/25/2022]
Abstract
Derzeit leiden weltweit mehr als 250 Mio. Menschen an einer chronischen Infektion mit Hepatitis-B-Virus (CHB). Eine chronische Infektion geht mit einem erhöhten Risiko der Entwicklung einer Leberfibrose/-zirrhose und der Entwicklung eines hepatozellulären Karzinoms einher. Derzeit versterben jährlich ca. 0,8–1 Mio. Menschen an den Folgen einer chronischen Infektion. Eine Schwierigkeit bei der Therapie der CHB besteht darin, dass das virale Genom in Form eines Minichroms sehr lange Zeit persistieren kann bzw. dass virale Sequenzen in das Wirtsgenom inserieren können. Chronische Infektionen sind häufig durch funktionale Defekte der zellulären Immunantwort, insbesondere der T‑Zell-Antwort charakterisiert, was einer Eliminierung HBV-infizierter Zellen entgegensteht. Immuntherapien zur Heilung der CHB zielen daher darauf ab, die antivirale Funktion der zellulären Immunantwort wiederherzustellen. Im Rahmen dieser Übersicht sollen verschiedene aktuelle Ansätze zur Immuntherapie der CHB beschrieben werden, insbesondere gentechnisch veränderte autologe T‑Zellen als mögliches Werkzeug zur Therapie der CHB. Weiterhin werden die Modulation von Checkpointinhibitoren der Immunantwort, metabolische T‑Zelltherapien und die therapeutische Impfung zur Stimulation der T‑Zellantwort als immuntherapeutische Strategien zur Therapie der chronischen HBV-Infektion zusammenfassend dargestellt.
Collapse
Affiliation(s)
- Zoltan Ivics
- Abteilung Biotechnologie, Paul-Ehrlich-Institut, Langen, Deutschland
| | | | - Tobias Zahn
- Abteilung Virologie, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225, Langen, Deutschland
| | - Eberhard Hildt
- Abteilung Virologie, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225, Langen, Deutschland.
| |
Collapse
|
7
|
Host Transcription Factors in Hepatitis B Virus RNA Synthesis. Viruses 2020; 12:v12020160. [PMID: 32019103 PMCID: PMC7077322 DOI: 10.3390/v12020160] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
The hepatitis B virus (HBV) chronically infects over 250 million people worldwide and is one of the leading causes of liver cancer and hepatocellular carcinoma. HBV persistence is due in part to the highly stable HBV minichromosome or HBV covalently closed circular DNA (cccDNA) that resides in the nucleus. As HBV replication requires the help of host transcription factors to replicate, focusing on host protein–HBV genome interactions may reveal insights into new drug targets against cccDNA. The structural details on such complexes, however, remain poorly defined. In this review, the current literature regarding host transcription factors’ interactions with HBV cccDNA is discussed.
Collapse
|