1
|
Kida T, Teragaki A, Ishida H, Sonoda S, Miyasaka M, Shigemitsu H. Preparation and temperature-controlled morphology of helical microrods composed of supramolecular α-cyclodextrin assemblies. RSC Adv 2023; 13:34366-34370. [PMID: 38024982 PMCID: PMC10665645 DOI: 10.1039/d3ra07537k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
Significant efforts have been devoted so far to artificially fabricate supramolecular helical nano- and microstructures through the regulated assembly of biological and synthetic building blocks. However, the preparation of supramolecular helical structures with a regulated morphology remains challenging. Here, helical microrods composed of supramolecular α-cyclodextrin (α-CD) assemblies were fabricated by allowing an α-CD/1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)/2-pentanol mixture to stand at 30-60 °C under high humidity conditions. The morphology could be controlled by temperature to produce helical microrods with a regulated pitch and length. These helical rods can be applied as optical devices, chiral separation devices and asymmetric catalysts.
Collapse
Affiliation(s)
- Toshiyuki Kida
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University Suita Japan
| | - Ayumi Teragaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Japan
| | - Haruya Ishida
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Japan
| | - Sayaka Sonoda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Japan
| | - Momoka Miyasaka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Japan
| | - Hajime Shigemitsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University Suita Japan
| |
Collapse
|
2
|
Sankaranarayanan RK, Venkatesh G, Ethiraj J, Pattabiraman M, Saravanakumar K, Arivazhagan G, Shanmugam R, Rajendiran N. Stepwise pesudopolyrotaxane nanostructure formation from supramolecular self-assembly by inclusion complexation of fast violet B with α- and β-cyclodextrins. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Kalaw JM, Shigemitsu H, Kida T. 2- O-Methylated β-Cyclodextrin as an Effective Building Block to Construct Supramolecular Assemblies with Various Morphologies and Molecular Arrangements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8407-8415. [PMID: 35762563 DOI: 10.1021/acs.langmuir.2c00980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The preparation of supramolecular cyclodextrin (CD) assemblies and control of their assembly mode through guest inclusion in CD cavities have been actively studied. Contrarily, there are limited reports on the control of the assembly mode of guest-free CD molecules by external stimuli. Herein, we report the use of 2-O-methylated β-cyclodextrin (2-Me-β-CD) as an effective building block in fabricating supramolecular assemblies with diverse morphologies and molecular arrangements through assembly mode control by various stimuli, such as temperature and solvent. When methanol and diethyl carbonate were used as good and poor solvents, respectively, 2-Me-β-CD formed an amorphous assembly through solvent evaporation on a polyethylene terephthalate (PET) substrate. Increasing the drying temperature and using crystalline substrates, such as highly oriented pyrolytic graphite (HOPG) and sapphire, changed the assembly mode of 2-Me-β-CD to a head-to-tail channel assembly. However, when a 2-Me-β-CD/1-propanol solution was mixed with linear alkanes as a poor solvent, 2-Me-β-CD with head-to-head channel assembly was formed as a precipitate. Additionally, when the corresponding cyclic alkane was used as an alternative poor solvent, an organogel composed of 2-Me-β-CD with head-to-head channel assemblies was obtained. The organogel obtained became a precipitate composed of 2-Me-β-CD with cage-type assembly upon heating at 50 °C. Among the supramolecular assemblies fabricated in this study, the head-to-tail channel assembly is a rare molecular assembly of β-CD and its derivatives. It possesses a modified columnar cavity that has potential applications in molecular recognition and sensing.
Collapse
Affiliation(s)
- Justine M Kalaw
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Osaka, Japan
| | - Hajime Shigemitsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-oka, Suita 565-0871, Osaka, Japan
- Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Osaka, Japan
| | - Toshiyuki Kida
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-oka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
4
|
Sardaru MC, Rosca I, Morariu S, Ursu EL, Ghiarasim R, Rotaru A. Injectable Thixotropic β-Cyclodextrin-Functionalized Hydrogels Based on Guanosine Quartet Assembly. Int J Mol Sci 2021; 22:ijms22179179. [PMID: 34502085 PMCID: PMC8431444 DOI: 10.3390/ijms22179179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Facile method for the preparation of β–cyclodextrin–functionalized hydrogels based on guanosine quartet assembly was described. A series of seven hydrogels were prepared by linking β–cyclodextrin molecules with guanosine moieties in different ratios through benzene–1,4–diboronic acid linker in the presence of potassium hydroxide. The potassium ions acted as a reticulation agent by forming guanosine quartets, leading to the formation of self–sustained transparent hydrogels. The ratios of the β–cyclodextrin and guanosine components have a significant effect on the internal structuration of the components and, correspondingly, on the mechanical properties of the final gels, offering a tunablity of the system by varying the components ratio. The insights into the hydrogels’ structuration were achieved by circular dichroism, scanning electron microscopy, atomic force microscopy, and X–ray diffraction. Rheological measurements revealed self–healing and thixotropic properties of all the investigated samples, which, in combination with available cyclodextrin cavities for active components loading, make them remarkable candidates for specific applications in biomedical and pharmaceutical fields. Moreover, all the prepared samples displayed selective antimicrobial properties against S. aureus in planktonic and biofilm phase, the activity also depending on the guanosine and cyclodextrin ratio within the hydrogel structure.
Collapse
Affiliation(s)
- Monica-Cornelia Sardaru
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley 41 A, Iasi 700487, Romania; (M.-C.S.); (I.R.); (E.-L.U.); (R.G.)
| | - Irina Rosca
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley 41 A, Iasi 700487, Romania; (M.-C.S.); (I.R.); (E.-L.U.); (R.G.)
| | - Simona Morariu
- Natural Polymers, Bioactive and Biocompatible Materials, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley 41 A, Iasi 700487, Romania;
| | - Elena-Laura Ursu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley 41 A, Iasi 700487, Romania; (M.-C.S.); (I.R.); (E.-L.U.); (R.G.)
| | - Razvan Ghiarasim
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley 41 A, Iasi 700487, Romania; (M.-C.S.); (I.R.); (E.-L.U.); (R.G.)
| | - Alexandru Rotaru
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley 41 A, Iasi 700487, Romania; (M.-C.S.); (I.R.); (E.-L.U.); (R.G.)
- Correspondence:
| |
Collapse
|
5
|
Somsri S, Kuwamura N, Kojima T, Yoshinari N, Konno T. Self-assembly of cyclic hexamers of γ-cyclodextrin in a metallosupramolecular framework with d-penicillamine. Chem Sci 2020; 11:9246-9253. [PMID: 34094196 PMCID: PMC8161144 DOI: 10.1039/d0sc03925j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/17/2020] [Indexed: 11/21/2022] Open
Abstract
Cyclodextrins are widely used cyclic oligosaccharides of d-glucose whose hydrophilic exterior is covered by hydroxyl groups and whose hydrophobic interior is surrounded by lipophilic moieties. Because of this structural feature, cyclodextrin molecules commonly aggregate into dimensional structures via intermolecular hydrogen bonds, and their aggregation into closed oligomeric architectures has been achieved only via the attachment of functional substituent groups to the cyclodextrin rings. Here, we report the first structurally characterized self-assembly of non-substituted γ-cyclodextrin molecules into cyclic hexamers, which was realized in a chiral coordination framework composed of complex-anions with d-penicillamine rather than l- or dl-penicillamine. The self-assembly is accompanied by the 3D-to-2D structural transformation of porous coordination frameworks to form helical hexagonal cavities that accommodate helical γ-cyclodextrin hexamers. This finding provides new insight into the development of cyclodextrin chemistry and host-guest chemistry based on chiral recognition and crystal engineering processes.
Collapse
Affiliation(s)
- Supattra Somsri
- Department of Chemistry, Graduate School of Science, Osaka University Toyonaka Osaka 560-0043 Japan
| | - Naoto Kuwamura
- Department of Chemistry, Graduate School of Science, Osaka University Toyonaka Osaka 560-0043 Japan
| | - Tatsuhiro Kojima
- Department of Chemistry, Graduate School of Science, Osaka University Toyonaka Osaka 560-0043 Japan
| | - Nobuto Yoshinari
- Department of Chemistry, Graduate School of Science, Osaka University Toyonaka Osaka 560-0043 Japan
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
6
|
Gim S, Zhu Y, Seeberger PH, Delbianco M. Carbohydrate-based nanomaterials for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1558. [PMID: 31063240 DOI: 10.1002/wnan.1558] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
Carbohydrates are abundant biomolecules, with a strong tendency to form supramolecular networks. A host of carbohydrate-based nanomaterials have been exploited for biomedical applications. These structures are based on simple mono- or disaccharides, as well as on complex, polymeric systems. Chemical modifications serve to tune the shapes and properties of these materials. In particular, carbohydrate-based nanoparticles and nanogels were used for drug delivery, imaging, and tissue engineering applications. Due to the reversible nature of the assembly, often based on a combination of hydrogen bonding and hydrophobic interactions, carbohydrate-based materials are valuable substrates for the creations of responsive systems. Herein, we review the current research on carbohydrate-based nanomaterials, with a particular focus on carbohydrate assembly. We will discuss how these systems are formed and how their properties are tuned. Particular emphasis will be placed on the use of carbohydrates for biomedical applications. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Soeun Gim
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Yuntao Zhu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
7
|
Loftsson T, Saokham P, Sá Couto AR. Self-association of cyclodextrins and cyclodextrin complexes in aqueous solutions. Int J Pharm 2019; 560:228-234. [PMID: 30771468 DOI: 10.1016/j.ijpharm.2019.02.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 12/23/2022]
Abstract
Cyclodextrins (CDs) are oligosaccharides that self-assemble in aqueous solutions to form transient clusters, nanoparticles and small microparticles. The critical aggregation concentration (cac) of the natural αCD, βCD and γCD in pure aqueous solutions was estimated to be 25, 8 and 9 mg/ml, respectively. The cac of 2-hydroxypropyl-β-cyclodextrin (HPβCD), that consists of mixture of isomers, was estimated to be significantly higher or 118 mg/ml. Addition of chaotropic agents (i.e. that disrupts non-covalent bonds such as hydrogen bonds) to the aqueous media increases the cac. Formation of drug/CD complexes can increase or decrease the cac. Due to the transient nature of the CD clusters and nanoparticles they can be difficult to detect and their presence is frequently ignored. However, they have profound effect on the physiochemical properties of CDs and their pharmaceutical applications. For example, the values of stability constants of drug/CD complexes can be both concentration dependent and method dependent. Like in the case of micelles water-soluble polymers can enhance the solubilizing effect of CDs. Also, formation of drug/CD complex nanoparticles appears to increase the ability of CDs to enhance drug delivery through some mucosal membranes.
Collapse
Affiliation(s)
- Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavík, Iceland.
| | - Phennapha Saokham
- College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand.
| | - André Rodrigues Sá Couto
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavík, Iceland.
| |
Collapse
|
8
|
Uenuma S, Maeda R, Yokoyama H, Ito K. Autonomously isolated pseudo-polyrotaxane nanosheets fabricated via hierarchically ordered supramolecular self-assembly. Chem Commun (Camb) 2019; 55:4158-4161. [DOI: 10.1039/c9cc00511k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Autonomously isolated PPR nanosheets are fabricated via complexation between β-CD and a carboxyl-terminated poloxamer and the structural coloration was exhibited.
Collapse
Affiliation(s)
- Shuntaro Uenuma
- Department of Advanced Materials Science
- Graduate School of Frontier Sciences
- The University of Tokyo
- Chiba 277-8561
- Japan
| | - Rina Maeda
- Department of Advanced Materials Science
- Graduate School of Frontier Sciences
- The University of Tokyo
- Chiba 277-8561
- Japan
| | - Hideaki Yokoyama
- Department of Advanced Materials Science
- Graduate School of Frontier Sciences
- The University of Tokyo
- Chiba 277-8561
- Japan
| | - Kohzo Ito
- Department of Advanced Materials Science
- Graduate School of Frontier Sciences
- The University of Tokyo
- Chiba 277-8561
- Japan
| |
Collapse
|