1
|
Incorporating Graphene Nanoplatelets and Carbon Nanotubes in Biobased Poly(ethylene 2,5-furandicarboxylate): Fillers' Effect on the Matrix's Structure and Lifetime. Polymers (Basel) 2023; 15:polym15020401. [PMID: 36679281 PMCID: PMC9863989 DOI: 10.3390/polym15020401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Poly(ethylene 2,5-furandicarboxylate) (PEF) nanocomposites reinforced with Graphene nanoplatelets (GNPs) and Carbon nanotubes (CNTs) were in situ synthesized in this work. PEF is a biobased polyester with physical properties and is the sustainable counterpart of Polyethylene Terephthalate (PET). Its low crystallizability affects the processing of the material, limiting its use to packaging, films, and textile applications. The crystallization promotion and the reinforcement of PEF can lead to broadening its potential applications. Therefore, PEF nanocomposites reinforced with various loadings of GNPs, CNTs, and hybrids containing both fillers were prepared, and the effect of each filler on their structural characteristics was investigated by X-ray Diffraction (XRD), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), and X-Ray Photoelectron Spectroscopy (XPS). The morphology and structural properties of a hybrid PEF nanocomposite were evaluated by Transmission Electron Microscopy (TEM). The thermo-oxidative degradation, as well as lifetime predictions of PEF nanocomposites, in an ambient atmosphere, were studied using Thermogravimetric Analysis (TGA). Results showed that the fillers' incorporation in the PEF matrix induced changes in the lamellar thickness and increased crystallinity up to 27%. TEM analysis indicated the formation of large CNTs aggregates in the case of the hybrid PEF nanocomposite as a result of the ultrasonication process. Finally, the presence of CNTs caused the retardation of PEF's carbonization process. This led to a slightly longer lifetime under isothermal conditions at higher temperatures, while at ambient temperature the PEF nanocomposites' lifetime is shorter, compared to neat PEF.
Collapse
|
2
|
Tsuji H, Osanai K, Arakawa Y. Stereocomplex and individual crystallization behavior of symmetric or enantiomeric substituted Poly(lactic acid)s random copolymers with high crystallizabilities. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Nishimae A, Sato H. Study of Co-crystallization and Intermolecular Hydrogen Bondings of Poly(glycolide- co- l-lactide) Copolymers by Terahertz and Low-Frequency Raman Spectroscopy. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Atsushi Nishimae
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada, Kobe, Hyogo 657-8501, Japan
| | - Harumi Sato
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada, Kobe, Hyogo 657-8501, Japan
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
4
|
Zheng Y, Yu C, Bao Y, Shan G, Pan P. Temperature-dependent crystal structure and structural evolution of poly(glycolide-co-lactide) induced by comonomeric defect inclusion/exclusion. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Tsuji H, Ohsada K, Arakawa Y. Stereocomplex- and homo-crystallization behavior, polymorphism, and thermal properties of enantiomeric random copolymers of l- and d-lactic acids from the melt. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
6
|
Altay E, Jang YJ, Kua XQ, Hillmyer MA. Synthesis, Microstructure, and Properties of High-Molar-Mass Polyglycolide Copolymers with Isolated Methyl Defects. Biomacromolecules 2021; 22:2532-2543. [PMID: 33970613 DOI: 10.1021/acs.biomac.1c00269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient, fast, and reliable method for the synthesis of high-molar-mass polyglycolide (PGA) in bulk using bismuth (III) subsalicylate through ring-opening transesterification polymerization is described. The difference between the crystallization (Tc ≈ 180 °C)/degradation (Td ≈ 245 °C) temperatures and the melting temperature (Tm ≈ 222 °C) significantly affects the ability to melt-process PGA homopolymer. To expand these windows, the effect of copolymer microstructure differences through incorporation of methyl groups in pairs using lactide or isolated using methyl glycolide (≤10% methyl) as comonomers on the thermal, mechanical, and barrier properties were studied. Structures of copolymers were characterized by nuclear magnetic resonance (1H and 13C NMR) spectroscopies. Films of copolymers were obtained, and the microstructural and physical properties were analyzed. PGA homopolymers exhibited an approximately 30 °C difference between Tm and Tc, which increased to 68 °C by incorporating up to 10% methyl groups in the chain while maintaining overall thermal stability. Oxygen and water vapor permeation values of solvent-cast nonoriented films of PGA homopolymers were found to be 4.6 cc·mil·m-2·d-1·atm-1 and 2.6 g·mil·m-2·d-1·atm-1, respectively. Different methyl distributions in the copolymer sequence, provided through either lactide or methyl glycolide, affected the resulting gas barrier properties. At 10% methyl insertion, using lactide as a comonomer significantly increased both O2 (32 cc·mil·m-2·d-1·atm-1) and water vapor (12 g·mil·m-2·d-1·atm-1) permeation. However, when methyl glycolide was utilized for methyl insertion at 10% Me content, excellent barrier properties for both O2 (2.9 cc·mil·m-2·d-1·atm-1) and water vapor (1.0 g·mil·m-2·d-1·atm-1) were achieved.
Collapse
Affiliation(s)
- Esra Altay
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Yoon-Jung Jang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Xiang Qi Kua
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
7
|
Zhu H, Lv Y, Shi D, Li YG, Miao WJ, Wang ZB. A Synchrotron in situ X-ray Study on the Multiple Melting Behaviors of Isomorphous Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(HB-co-HV)) with Middle HV Content. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2427-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Qi L, Zhu Q, Cao D, Liu T, Zhu KR, Chang K, Gao Q. Preparation and Properties of Stereocomplex of Poly(lactic acid) and Its Amphiphilic Copolymers Containing Glucose Groups. Polymers (Basel) 2020; 12:E760. [PMID: 32244536 PMCID: PMC7240496 DOI: 10.3390/polym12040760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/24/2022] Open
Abstract
The stereocomplex of poly(lactic acid) containing glucose groups (sc-PLAG) was prepared by solution blending from equal amounts of poly(l-lactic acid) (PLLA) and poly(d-lactic acid-co-glucose) (PDLAG), which were synthesized from l- and d-lactic acid and glucose by melt polycondensation. The methods, including 1H nuclear magnetic resonance spectroscopy (1H NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), polarizing microscope (POM), scanning electron microscope (SEM), transmission electron microscope (TEM), and contact angle were used to determine the effects of the stereocomplexation of enantiomeric poly(lactic acid) (PLA) units, the amphiphilicity due to glucose residues and lactic acid units, and the interaction of glucose residues with lactic units on the crystallization performance, hydrophilicity, thermal stability, and morphology of samples. The results showed PDLAG was multi-armed, and partial OH groups of glucose residues in PDLAG might remain unreacted. The molecular weight (Mw), dispersity (Ɖ), and glucose proportion in the chain of PDLAG thereby had significant effects on sc-PLAG. There were the stereocomplexation of enantiomeric lactic units and the amphiphilic self-assembly of PDLAG in sc-PLAG, which resulted in glucose groups mainly in the surface phase and lactic units in the bulk phase. The sc-PLAG only possessed the stereocomplex crystal owing to the interaction between nearly equimolar of l-lactic units of PLLA and d-lactic units of PDLAG, and had no homo-crystallites of l- or d-lactic units, which improved the melting temperature (Tm) of sc-PLAG about 50 °C higher than that of PLLA. Glucose groups in sc-PLAG played an important role by forming heterogeneous nucleation, promoting amphiphilic self-assembly, and affecting the ordered arrangement of lactic units. The glass transition temperature (Tg), the melting temperature (Tm), crystallinity, crystallization rate, and water absorption of sc-PLAG showed similar changes with the increased glucose content in feeding. All these parameters increased at first, and the maximum appeared as glucose content in feeding about 2%, such as the maximum crystallinity of 48.8% and the maximum water absorption ratio being 11.7%. When glucose content in feeding continued increasing, all these performances showed a downward trend due to the decrease of arrangement regularity of lactic acid chains caused by glucose groups. Moreover, the contact angle of sc-PLAG decreased gradually with the increased glucose content in feeding to obtain the minimum 77.5° as the glucose content in feeding being 5%, while that of PLLA was 85.0°. The sc-PLAG possessed a regular microsphere structure, and its microspheres with a diameter of about 200 nm could be observed. In conclusion, sc-PLAG containing proper glucose amount could effectively enhance the crystallinity, hydrophilicity, and thermal stability of PLA material, which is useful for drug delivery, a scaffold for tissue engineering, and other applications of biomedicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qinwei Gao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (L.Q.); (Q.Z.); (D.C.); (T.L.); (K.R.Z.); (K.C.)
| |
Collapse
|
9
|
Efficient synthesis, characterization, and application of biobased scab-bionic hemostatic polymers. Polym J 2020. [DOI: 10.1038/s41428-020-0315-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Jin C, Leng X, Zhang M, Wang Y, Wei Z, Li Y. Fully biobased biodegradable poly(
l
‐lactide)‐
b
‐poly(ethylene brassylate)‐
b
‐poly(
l
‐lactide) triblock copolymers: synthesis and investigation of relationship between crystallization morphology and thermal properties. POLYM INT 2020. [DOI: 10.1002/pi.5958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chenhao Jin
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of Technology Dalian China
| | - Xuefei Leng
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of Technology Dalian China
| | - Manwen Zhang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of Technology Dalian China
| | - Yanshai Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of Technology Dalian China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of Technology Dalian China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of Technology Dalian China
| |
Collapse
|
11
|
Zhu H, Lv Y, Duan T, Zhu M, Li Y, Miao W, Wang Z. In-situ investigation of multiple endothermic peaks in isomorphous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with low HV content by synchrotron radiation. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Ayyoob M, Kim YJ. Effect of Chemical Composition Variant and Oxygen Plasma Treatments on the Wettability of PLGA Thin Films, Synthesized by Direct Copolycondensation. Polymers (Basel) 2018; 10:polym10101132. [PMID: 30961057 PMCID: PMC6403949 DOI: 10.3390/polym10101132] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/21/2022] Open
Abstract
The synthesis of high molecular weight poly (lactic-co-glycolic) acid (PLGA) copolymers via direct condensation copolymerization is itself a challenging task. Moreover, some of the characteristic properties of polylactide (PLA)-based biomaterials, such as brittleness, hydrophobicity, and longer degradation time, are not suitable for certain biomedical applications. However, such properties can be altered by the copolymerization of PLA with other biodegradable monomers, such as glycolic acid. A series of high molecular weight PLGAs were synthesized through the direct condensation copolymerization of lactic and glycolic acids, starting from 0 to 50 mol% of glycolic acid, and the wettability of its films was monitored as a function of the feed molar ratio. Copolymerization was performed in the presence of a bi-catalytic system using stannous chloride dihydrate and methanesulfonic acid (MSA). The viscosity average molecular weight of the resulting PLGA was in the range of 80k to 135k g/mol. The PLGA films were prepared using the solvent casting technique, and were treated with oxygen plasma for 2 min. The water contact angle of the PLGA films was determined before and after the oxygen plasma treatments, and it was observed that the wettability increased with an increase in the glycolic acid contents, however, the manifolds increased after 2 min of oxygen plasma treatments.
Collapse
Affiliation(s)
- Muhammad Ayyoob
- Department of Chemical Engineering, Sungkyunkwan University, (16419) 2066 Seobu-Ro, Jangan-Gu, Suwon-Si, Gyeonggi-Do 16419, Korea.
| | - Young Jun Kim
- Department of Chemical Engineering, Sungkyunkwan University, (16419) 2066 Seobu-Ro, Jangan-Gu, Suwon-Si, Gyeonggi-Do 16419, Korea.
| |
Collapse
|