Kuwabara J, Kanbara T. Synthesis of Organic Optoelectronic Materials Using Direct C-H Functionalization.
Chempluschem 2024;
89:e202300400. [PMID:
37823322 DOI:
10.1002/cplu.202300400]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/13/2023]
Abstract
Small molecules and polymers with conjugated structures can be used as organic optoelectronic materials. These molecules have conventionally been synthesized by cross-coupling reactions; however, in recent years, direct functionalization of C-H bonds has been used to synthesize organic optoelectronic materials. Representative reactions include direct arylation reactions (C-H/C-X couplings, with X being halogen or pseudo-halogen) and cross-dehydrogenative coupling (C-H/C-H cross-coupling) reactions. Although these reactions are convenient for short-step synthesis, they require regioselectivity in the C-H bonds and suppression of undesired homo-coupling side reactions. This review introduces examples of the synthesis of organic optoelectronic materials using two types of direct C-H functionalization reactions. In addition, we summarize our recent activities in the development of direct C-H functionalization reactions using fluorobenzenes as substrates. This review covers the reaction mechanism and material properties of the resulting products.
Collapse