1
|
Gubała D, Slastanova A, Matthews L, Islas L, Wąsik P, Cacho-Nerin F, Ferreira Sanchez D, Robles E, Chen M, Briscoe WH. Effects of Erucamide on Fiber "Softness": Linking Single-Fiber Crystal Structure and Mechanical Properties. ACS NANO 2024. [PMID: 38334316 PMCID: PMC10883039 DOI: 10.1021/acsnano.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Erucamide is known to play a critical role in modifying polymer fiber surface chemistry and morphology. However, its effects on fiber crystallinity and mechanical properties remain to be understood. Here, synchrotron nanofocused X-ray Diffraction (nXRD) revealed a bimodal orientation of the constituent polymer chains aligned along the fiber axis and cross-section, respectively. Erucamide promoted crystallinity in the fiber, leading to larger and more numerous lamellae crystallites. The nXRD nanostructual characterization is complemented by single-fiber uniaxial tensile tests, which showed that erucamide significantly affected fiber mechanical properties, decreasing fiber tensile strength and stiffness but enhancing fiber toughness, fracture strain, and ductility. To correlate these single-fiber nXRD and mechanical test results, we propose that erucamide mediated slip at the interfaces between crystallites and amorphous domains during stress-induced single-fiber crystallization, also decreasing the stress arising from the shear displacement of microfibrils and deformation of the macromolecular network. Linking the single-fiber crystal structure with the single-fiber mechanical properties, these findings provide the direct evidence on a single-fiber level for the role of erucamide in enhancing fiber "softness".
Collapse
Affiliation(s)
- Dajana Gubała
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Anna Slastanova
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Lauren Matthews
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, U.K
| | - Luisa Islas
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Patryk Wąsik
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, U.K
| | - Fernando Cacho-Nerin
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | | | - Eric Robles
- Procter & Gamble Newcastle Innovation Centre, Whitley Road, Longbenton, Newcastle NE12 9TS, U.K
| | - Meng Chen
- Procter & Gamble Technology (Beijing) Co., Ltd., 35 Yu'an Rd, Shunyi District, Beijing 101312, China
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
2
|
Di Sacco F, de Jong L, Pelras T, Portale G. Confined crystallization and polymorphism in iPP thin films. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Nolin A, Pierson K, Hlibok R, Lo CY, Kayser LV, Dhong C. Controlling fine touch sensations with polymer tacticity and crystallinity. SOFT MATTER 2022; 18:3928-3940. [PMID: 35546489 PMCID: PMC9302477 DOI: 10.1039/d2sm00264g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The friction generated between a finger and an object forms the mechanical stimuli behind fine touch perception. To control friction, and therefore tactile perception, current haptic devices typically rely on physical features like bumps or pins, but chemical and microscale morphology of surfaces could be harnessed to recreate a wider variety of tactile sensations. Here, we sought to develop a new way to create tactile sensations by relying on differences in microstructure as quantified by the degree of crystallinity in polymer films. To isolate crystallinity, we used polystyrene films with the same chemical formula and number averaged molecular weights, but which differed in tacticity and annealing conditions. These films were also sufficiently thin as to be rigid which minimized effects from bulk stiffness and had variations in roughness lower than detectable by humans. To connect crystallinity to human perception, we performed mechanical testing with a mock finger to form predictions about the degree of crystallinity necessary to result in successful discrimination by human subjects. Psychophysical testing verified that humans could discriminate surfaces which differed only in the degree of crystallinity. Although related, human performance was not strongly correlated with a straightforward difference in the degree of crystallinity. Rather, human performance was better explained by quantifying transitions in steady to unsteady sliding and the generation of slow frictional waves (r2 = 79.6%). Tuning fine touch with polymer crystallinity may lead to better engineering of existing haptic interfaces or lead to new classes of actuators based on changes in microstructure.
Collapse
Affiliation(s)
- Abigail Nolin
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
| | - Kelly Pierson
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
| | - Rainer Hlibok
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
| | - Chun-Yuan Lo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Laure V Kayser
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Charles Dhong
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
4
|
Nakanishi Y, Uchida K, Mita K, Kamitani K, Kojio K, Takahara A. Morphological study of isotactic polypropylene thin films on different substrates using grazing incidence wide-angle X-ray diffraction. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Kawaguchi D, Yamamoto K, Abe T, Jiang N, Koga T, Yamamoto S, Tanaka K. Local orientation of chains at crystal/amorphous interfaces buried in isotactic polypropylene thin films. Phys Chem Chem Phys 2021; 23:23466-23472. [PMID: 34643197 DOI: 10.1039/d1cp03959h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A better understanding of the aggregation states of polymer chains in thin films is of pivotal importance for developing thin film polymer devices in addition to its inherent scientific interest. Here we report the preferential orientation of the crystalline lamellae for isotactic polypropylene (iPP) in spin-coated films by grazing incidence of wide-angle X-ray diffraction in conjunction with sum frequency generation vibrational spectroscopy, which provides information on the local conformation of chains at crystal/amorphous interfaces buried in a thin film. The crystalline orientation of iPP, which formed cross-hatched lamellae induced by lamellar branching, altered from a mixture of edge-on and face-on mother lamellae to preferential face-on mother lamellae with decreasing thickness. The orientation of methyl groups at the crystal/amorphous interfaces in the interior region of the iPP films changed, accompanied by a change in the lamellar orientation.
Collapse
Affiliation(s)
- Daisuke Kawaguchi
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan. .,Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Kentaro Yamamoto
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan.
| | - Tatsuki Abe
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan.
| | - Naisheng Jiang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, USA
| | - Tadanori Koga
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, USA.,Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Satoru Yamamoto
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Keiji Tanaka
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan. .,Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
6
|
Wu DJ, Vonk NH, Lamers BA, Castilho M, Malda J, Hoefnagels JP, Dankers PY. Anisotropic hygro-expansion in hydrogel fibers owing to uniting 3D electrowriting and supramolecular polymer assembly. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Nishitsuji S, Watanabe Y, Takebe T, Fujii N, Okano M, Takenaka M. X-ray scattering study on the changes in the morphology of low-modulus polypropylene under cyclic uniaxial elongation. Polym J 2019. [DOI: 10.1038/s41428-019-0284-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|