1
|
Prakash S. Nano-based drug delivery system for therapeutics: a comprehensive review. Biomed Phys Eng Express 2023; 9:052002. [PMID: 37549657 DOI: 10.1088/2057-1976/acedb2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Nanomedicine and nano-delivery systems hold unlimited potential in the developing sciences, where nanoscale carriers are employed to efficiently deliver therapeutic drugs at specifically targeted sites in a controlled manner, imparting several advantages concerning improved efficacy and minimizing adverse drug reactions. These nano-delivery systems target-oriented delivery of drugs with precision at several site-specific, with mild toxicity, prolonged circulation time, high solubility, and long retention time in the biological system, which circumvent the problems associated with the conventional delivery approach. Recently, nanocarriers such as dendrimers, liposomes, nanotubes, and nanoparticles have been extensively investigated through structural characteristics, size manipulation, and selective diagnosis through disease imaging molecules, which are very effective and introduce a new paradigm shift in drugs. In this review, the use of nanomedicines in drug delivery has been demonstrated in treating various diseases with significant advances and applications in different fields. In addition, this review discusses the current challenges and future directions for research in these promising fields as well.
Collapse
Affiliation(s)
- Satyendra Prakash
- Centre of Biotechnology, Faculty of Science, University of Allahabad, Allahabad, India
| |
Collapse
|
2
|
Mignani S, Shi X, Rodrigues J, Tomas H, Karpus A, Majoral JP. First-in-class and best-in-class dendrimer nanoplatforms from concept to clinic: Lessons learned moving forward. Eur J Med Chem 2021; 219:113456. [PMID: 33878563 DOI: 10.1016/j.ejmech.2021.113456] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Research to develop active dendrimers by themselves or as nanocarriers represents a promising approach to discover new biologically active entities that can be used to tackle unmet medical needs including difficult diseases. These developments are possible due to the exceptional physicochemical properties of dendrimers, including their biocompatibility, as well as their therapeutic activity as nanocarriers and drugs themselves. Despite a large number of academic studies, very few dendrimers have crossed the 'valley of death' between. Only a few number of pharmaceutical companies have succeeded in this way. In fact, only Starpharma (Australia) and Orpheris, Inc. (USA), an Ashvattha Therapeutics subsidiary, can fill all the clinic requirements to have in the market dendrimers based drugs/nancocarriers. After evaluating the main physicochemical properties related to the respective biological activity of dendrimers classified as first-in-class or best-in-class in nanomedicine, this original review analyzes the advantages and disavantages of these two strategies as well the concerns to step in clinical phases. Various solutions are proposed to advance the use of dendrimers in human health.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, Rue des Saints Peres, CNRS UMR 860, 75006, Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| | - Xangyang Shi
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China.
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| | - Helena Tomas
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077, Toulouse Cedex 4, France; Université Toulouse, 118 Route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077, Toulouse Cedex 4, France.
| |
Collapse
|
3
|
Mignani S, Shi X, Rodrigues J, Tomas H, Karpus A, Majoral JP. First-in-class and best-in-class dendrimer nanoplatforms from concept to clinic: Lessons learned moving forward. Eur J Med Chem 2021. [DOI: https://doi.org/10.1016/j.ejmech.2021.113456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Gao L, Liu X, Xu M, Sun G, Xu S, Zou T, Wang L, Wang F, Da J, Wang Y, Wang L. Biodegradable Anti-Biofilm Fiber-Membrane Ureteral Stent Constructed with a Robust Biomimetic Superhydrophilic Polycationic Hydration Surface Exhibiting Synergetic Antibacterial and Antiprotein Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006815. [PMID: 33783975 DOI: 10.1002/smll.202006815] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The biofouling of ureteral stents and subsequent urinary tract infections mainly come from the adsorption and adhesion of proteins and microorganisms and their ensuing proliferation. Although general polycationic surfaces in implants have good antibacterial activities, they suffer from limited durability due to severe protein and bacterial adsorption. Here, a biodegradable and anti-biofilm fiber-membrane structured ureteral stent (FMBUS) with synergetic contact-killing antibacterial activity and antiprotein adsorption is described. The stent is prepared by generating hyperbranched poly(amide-amine)-grafted polydopamine microparticles (≈300 nm) on the surface of fibers by in situ polymerization and Schiff base reactions. The biomimetic surface endows the FMBUS with a positive charge (+21.36 mV) and superhydrophilicity (water contact angle: 0°). As a result, the stents fulfilled the following functions: i) reduced attachment of host protein due to superhydrophilicity (Lysozyme: 92.1%; human serum albumin: 39.4%); ii) high bactericidal activities against contact pathogenic bacteria (contact-killing rate: 99.9999% for both E. coli and S. aureus; antiadhesion rate: 99.2% for E. coli and 99.9999% for S. aureus); iii) biocompatibility in vitro (relative growth rate of L929: >90% on day 3) and in vivo; and iv) gradient biodegradability to avoid a second surgery of stent extraction 1-2 weeks after implantation.
Collapse
Affiliation(s)
- Liheng Gao
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xingxing Liu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Mingxi Xu
- Department of Urology, Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200011, China
| | - Gang Sun
- Fiber and Polymer Science, University of California, Davis, CA, 95616, USA
| | - Sijun Xu
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
| | - Ting Zou
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Litianmu Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Fujun Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jun Da
- Department of Urology, Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200011, China
| | - Yiwei Wang
- Department of Urology, Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200011, China
| | - Lu Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
5
|
Purnell GE, McNally MT, Callis PR, Walker RA. Buried Liquid Interfaces as a Form of Chemistry in Confinement: The Case of 4-Dimethylaminobenzonitrile at the Silica–Aqueous Interface. J Am Chem Soc 2020; 142:2375-2385. [DOI: 10.1021/jacs.9b11662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Grace E. Purnell
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Marshall T. McNally
- Montana Materials Science Program, Montana State University, Bozeman, Montana 59717, United States
| | - Patrik R. Callis
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Robert A. Walker
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
- Montana Materials Science Program, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|