1
|
Hussain A, Gul H, Raza W, Qadir S, Rehan M, Raza N, Helal A, Shaikh MN, Aziz MA. Micro and Nanoporous Membrane Platforms for Carbon Neutrality: Membrane Gas Separation Prospects. CHEM REC 2024; 24:e202300352. [PMID: 38501854 DOI: 10.1002/tcr.202300352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Recently, carbon neutrality has been promoted as a potentially practical solution to global CO2 emissions and increasing energy-consumption challenges. Many attempts have been made to remove CO2 from the environment to address climate change and rising sea levels owing to anthropogenic CO2 emissions. Herein, membrane technology is proposed as a suitable solution for carbon neutrality. This review aims to comprehensively evaluate the currently available scientific research on membranes for carbon capture, focusing on innovative microporous material membranes used for CO2 separation and considering their material, chemical, and physical characteristics and permeability factors. Membranes from such materials comprise metal-organic frameworks, zeolites, silica, porous organic frameworks, and microporous polymers. The critical obstacles related to membrane design, growth, and CO2 capture and usage processes are summarized to establish novel membranes and strategies and accelerate their scaleup.
Collapse
Affiliation(s)
- Arshad Hussain
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, 31261, Dhahran, Saudi Arabia
| | - Hajera Gul
- Department of Chemistry, Shaheed Benazir Bhutto Women University, 25000, Peshawar, Pakistan
| | - Waseem Raza
- Institute for Advanced Study, Shenzhen University, 518060, Guangdong, China
- College of Civil and Transportation Engineering, Shenzhen University, 518060, Shenzhen, Guangdong, China
| | - Salman Qadir
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, PR China
| | - Muhammad Rehan
- Department of Chemical Engineering, Beijing Institute of Technology, 100000, Beijing, China
| | - Nadeem Raza
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Kingdom of Saudi Arabia
| | - Aasif Helal
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, 31261, Dhahran, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, 31261, Dhahran, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, 31261, Dhahran, Saudi Arabia
| |
Collapse
|
2
|
Chehrazi E. Theoretical models for gas separation prediction of mixed matrix membranes: effects of the shape factor of nanofillers and interface voids. JOURNAL OF POLYMER ENGINEERING 2023. [DOI: 10.1515/polyeng-2022-0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
In this work, a new model is developed by modifying the existing Maxwell–Wagner–Sillars (MWS) model to predict the gas separation properties of mixed matrix membranes (MMMs). The new modified MWS model, for the first time, provides the simultaneous exploration of the role of nanofillers/matrix interface voids and the exact geometrical shape of nanofillers in predicting the gas separation properties of MMMs. To unveil the crucial role of nanofillers/matrix interface voids, a mixed matrix membrane is considered a three-component system composed of the polymer matrix as the continuous component, nanofillers as the dispersed component and the interface voids between the two components. Moreover, the new model elucidates the role of the exact ellipsoidal shape of nanofillers within the membrane on the gas separation of MMMs by considering the shape factor of nanofillers. The newly developed modified MWS model is accurately able to predict the gas permeation of MMMs with a lower average absolute relative error (%AARE) of around 8% compared with the around 30% for conventional models such as the Maxwell model, Bruggeman model, Lewis–Nielsen model and Pal model and even compared with the modified Maxwell model (∼24%).
Collapse
Affiliation(s)
- Ehsan Chehrazi
- Department of Polymer Chemistry and Materials, Faculty of Chemistry and Petroleum Sciences , Shahid Beheshti University , Tehran 1983969411 , Iran
| |
Collapse
|
3
|
Guan H, Shen M, Harris C, Lin H, Wei K, Morales M, Bronowich N, Sun S. Cu 2O nanoparticle-catalyzed tandem reactions for the synthesis of robust polybenzoxazole. NANOSCALE 2022; 14:6162-6170. [PMID: 35388863 DOI: 10.1039/d2nr00492e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report the synthesis of Cu2O nanoparticles (NPs) by controlled oxidation of Cu NPs and the study of these NPs as a robust catalyst for ammonia borane dehydrogenation, nitroarene hydrogenation, and amine/aldehyde condensation into Schiff-base compounds. Upon investigation of the size-dependent catalysis for ammonia borane dehydrogenation and nitroarene hydrogenation using 8-18 nm Cu2O NPs, we found 13 nm Cu2O NPs to be especially active with quantitative conversion of nitro groups to amines. The 13 nm Cu2O NPs also efficiently catalyze tandem reactions of ammonia borane, diisopropoxy-dinitrobenzene, and terephthalaldehyde, leading to a controlled polymerization and the facile synthesis of polybenzoxazole (PBO). The highly pure PBO (Mw = 19 kDa) shows much enhanced chemical stability than the commercial PBO against hydrolysis in boiling water or simulated seawater, demonstrating a great potential of using noble metal-free catalysts for green chemistry synthesis of PBO as a robust lightweight structural material for thermally and mechanically demanding applications.
Collapse
Affiliation(s)
- Huanqin Guan
- Department of Chemistry, Brown University, Providence, RI, 02912, USA.
| | - Mengqi Shen
- Department of Chemistry, Brown University, Providence, RI, 02912, USA.
| | - Cooro Harris
- Department of Chemistry, Brown University, Providence, RI, 02912, USA.
| | - Honghong Lin
- Department of Chemistry, Brown University, Providence, RI, 02912, USA.
| | - Kecheng Wei
- Department of Chemistry, Brown University, Providence, RI, 02912, USA.
| | - Michael Morales
- Department of Chemistry, Brown University, Providence, RI, 02912, USA.
| | - Noah Bronowich
- Department of Chemistry, Brown University, Providence, RI, 02912, USA.
| | - Shouheng Sun
- Department of Chemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
4
|
Chehrazi E. Determination of the Thickness of Interfacial Voids in a Spherical Nanoparticles - Polymer Membrane: Fundamental Insight from the Gas Permeation Modeling. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
The novel composite membranes containing chloride and acid functionalized multiwall carbon nanotube fillers for gas separation. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Liu Y, Kita H, Tanaka K, Imawaka K, Tanaka S, Takewaki T. Mechanochemically synthesized
ZIF
‐8 nanoparticles blended into
6FDA‐TrMPD
membranes for
C
3
H
6
/
C
3
H
8
separation. J Appl Polym Sci 2020. [DOI: 10.1002/app.50251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yongsheng Liu
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| | - Hidetoshi Kita
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| | - Kazuhiro Tanaka
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| | - Kota Imawaka
- Faculty of Environmental and Urban Engineering Kansai University Osaka Japan
| | - Shunsuke Tanaka
- Faculty of Environmental and Urban Engineering Kansai University Osaka Japan
| | - Takahiko Takewaki
- Yokohama Research Center Mitsubishi Chemical Corporation Yokohama Japan
| |
Collapse
|