1
|
Ahuja R, Shivhare V, Konar AD. Recent Advances in Smart Self-Assembled Bioinspired Hydrogels: A Bridging Weapon for Emerging Health Care Applications from Bench to Bedside. Macromol Rapid Commun 2024; 45:e2400255. [PMID: 38802265 DOI: 10.1002/marc.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Stimuli-responsive low molecular weight hydrogel interventions for Biomedical challenges are a rapidly evolving paradigm in the bottom-up approach recently. Peptide-based self-assembled nano biomaterials present safer alternatives to their non-degradable counterparts as demanded for today's most urged clinical needs.Although a plethora of work has already been accomplished, programming hydrogelators with appropriate functionalities requires a better understanding as the impact of the macromolecular structure of the peptides and subsequently, their self-assembled nanostructures remain unidentified. Henceforth this review focuses on two aspects: Firstly, the underlying guidelines for building biomimetic strategies to tailor scaffolds leading to hydrogelation along with the role of non-covalent interactions that are the key components of various self-assembly processes. In the second section, it is aimed to bring together the recent achievements with designer assembly concerning their self-aggregation behaviour and applications mainly in the biomedical arena like drug delivery carrier design, antimicrobial, anti-inflammatory as well as wound healing materials. Furthermore, it is anticipated that this article will provide a conceptual demonstration of the different approaches taken towards the construction of these task-specific designer hydrogels. Finally, a collective effort among the material scientists is required to pave the path for the entrance of these intelligent materials into medicine from bench to bedside.
Collapse
Affiliation(s)
- Rishabh Ahuja
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
| | - Vaibhav Shivhare
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
| | - Anita Dutt Konar
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
- School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
- University Grants Commission, New Delhi, 110002, India
| |
Collapse
|
2
|
Criado-Gonzalez M, Peñas MI, Barbault F, Müller AJ, Boulmedais F, Hernández R. Salt-induced Fmoc-tripeptide supramolecular hydrogels: a combined experimental and computational study of the self-assembly. NANOSCALE 2024; 16:9887-9898. [PMID: 38683577 DOI: 10.1039/d4nr00335g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Delving into the mechanism behind the molecular interactions at the atomic level of short-sequence peptides plays a key role in the development of nanomaterials with specific structure-property-function relationships from a bottom-up perspective. Due to their poor water solubility, the self-assembly of Fmoc-bearing peptides is usually induced by dissolution in an organic solvent, followed by a dilution step in water, pH changes, and/or a heating-cooling process. Herein, we report a straightforward methodology for the gelation of Fmoc-FFpY (F: phenylalanine; Y: tyrosine; and p: PO42-), a negatively charged tripeptide, in NaCl solution. The electrostatic interactions between Fmoc-FFpY and Na+ ions give rise to different nanofibrillar hydrogels with rheological properties and nanofiber sizes modulated by the NaCl concentration in pure aqueous media. Initiated by the electrostatic interactions between the peptide phosphate groups and the Na+ ions, the peptide self-assembly is stabilized thanks to hydrogen bonds between the peptide backbones and the π-π stacking of aromatic Fmoc and phenyl units. The hydrogels showed self-healing and thermo-responsive properties for potential biomedical applications. Molecular dynamics simulations from systems devoid of prior training not only confirm the aggregation of peptides at a critical salt concentration and the different interactions involved, but also corroborate the secondary structure of the hydrogels at the microsecond timescale. It is worth highlighting the remarkable achievement of reproducing the morphological behavior of the hydrogels using atomistic simulations. To our knowledge, this study is the first to report such a correspondence.
Collapse
Affiliation(s)
- Miryam Criado-Gonzalez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), 28006 Madrid, Spain.
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Mario Iván Peñas
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), 28006 Madrid, Spain.
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | | | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR 22), 67034 Strasbourg, France
| | - Rebeca Hernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), 28006 Madrid, Spain.
| |
Collapse
|
3
|
Altuntaş E, Özkan B, Güngör S, Özsoy Y. Biopolymer-Based Nanogel Approach in Drug Delivery: Basic Concept and Current Developments. Pharmaceutics 2023; 15:1644. [PMID: 37376092 DOI: 10.3390/pharmaceutics15061644] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Due to their increased surface area, extent of swelling and active substance-loading capacity and flexibility, nanogels made from natural and synthetic polymers have gained significant interest in scientific and industrial areas. In particular, the customized design and implementation of nontoxic, biocompatible, and biodegradable micro/nano carriers makes their usage very feasible for a range of biomedical applications, including drug delivery, tissue engineering, and bioimaging. The design and application methodologies of nanogels are outlined in this review. Additionally, the most recent advancements in nanogel biomedical applications are discussed, with particular emphasis on applications for the delivery of drugs and biomolecules.
Collapse
Affiliation(s)
- Ebru Altuntaş
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| | - Burcu Özkan
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220 Istanbul, Türkiye
| | - Sevgi Güngör
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| | - Yıldız Özsoy
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| |
Collapse
|
4
|
Liu J, Zhang Y, van Dongen K, Kennedy C, Schotman MJG, Marín San Román PP, Storm C, Dankers PYW, Sijbesma RP. Hepatic Spheroid Formation on Carbohydrate-Functionalized Supramolecular Hydrogels. Biomacromolecules 2023. [PMID: 37246400 DOI: 10.1021/acs.biomac.2c01390] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Two synthetic supramolecular hydrogels, formed from bis-urea amphiphiles containing lactobionic acid (LBA) and maltobionic acid (MBA) bioactive ligands, are applied as cell culture matrices in vitro. Their fibrillary and dynamic nature mimics essential features of the extracellular matrix (ECM). The carbohydrate amphiphiles self-assemble into long supramolecular fibers in water, and hydrogels are formed by physical entanglement of fibers through bundling. Gels of both amphiphiles exhibit good self-healing behavior, but remarkably different stiffnesses. They display excellent bioactive properties in hepatic cell cultures. Both carbohydrate ligands used are proposed to bind to asialoglycoprotein receptors (ASGPRs) in hepatic cells, thus inducing spheroid formation when seeding hepatic HepG2 cells on both supramolecular hydrogels. Ligand nature, ligand density, and hydrogel stiffness influence cell migration and spheroid size and number. The results illustrate the potential of self-assembled, carbohydrate-functionalized hydrogels as matrices for liver tissue engineering.
Collapse
Affiliation(s)
- Jie Liu
- Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Ying Zhang
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Kim van Dongen
- CytoSMART Technologies B.V., Vrijstraat 9B, Eindhoven 5611 AT, The Netherlands
| | - Chris Kennedy
- Institute for Complex Molecular Systems, Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Maaike J G Schotman
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Patricia P Marín San Román
- Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Cornelis Storm
- Institute for Complex Molecular Systems, Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Rint P Sijbesma
- Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
5
|
Dontas IA, Lelovas P, Parara S, Galanos A, Agrogiannis G, Goutas D, Charalambidis G, Nikolaou V, Landrou G, Kokotidou C, Apostolidou CP, Mitraki A, Coutsolelos AG. Delivery of Porphyrins Through Self-Assembling Peptide Hydrogels for Accelerated Healing of Experimental Skin Defects In Vivo. Cureus 2023; 15:e39120. [PMID: 37332461 PMCID: PMC10273017 DOI: 10.7759/cureus.39120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2023] [Indexed: 06/20/2023] Open
Abstract
INTRODUCTION The care and healing of skin defects resulting from different causes has been the object of research to achieve rapid and complete skin regeneration. Hydrogels have been used for their ability to maintain hydration during wound healing, absorb wound exudate, and cover the underlying tissue without adherence while being transparent. In this study, we evaluated the efficacy of a hydrogel (H) with encapsulated porphyrin (H+P) on a rat model of surgically-induced skin defects. METHODS Four round 6 mm diameter skin defects were performed under general anesthesia on the dorsal area of 24 three-month-old "Young" and 24 twelve-month-old "Mature" male rats. Each age group was separated into the Control, H, and H+P groups, n=8 each, where no therapy, H, or H+P was respectively applied daily for 20 days. Digital photographs and skin biopsies were taken on the third, seventh, 10th, and 20th postoperative days and evaluated by planimetry, histology, and immunohistochemistry. RESULTS Planimetry results demonstrated significantly decreased perimeter, diameter, and area measurements (p<0.005) of group H+P compared to Control and H groups on days 10 and 20 in the young rats, while in the mature rats, the significant differences were evident earlier (perimeter third day p<0.05; diameter and area seventh day p<0.05 and p<0.005, respectively vs. H). Granulation and scar tissue formation were also reduced in the H+P groups although they were not statistically significant. CONCLUSIONS The application of H+P on the skin defects benefited the healing process in both young and mature animal groups, as evidenced by the statistically significant findings of planimetry. The beneficial healing process was more pronounced in the mature animals, both in the level of statistical significance as well as regarding time (evident already on the third day of healing), probably due to porphyrin assisting the reduced healing rate, which is observed in organisms of advanced age.
Collapse
Affiliation(s)
- Ismene A Dontas
- Veterinary Medicine, Laboratory for Research of the Musculoskeletal System, School of Medicine, National and Kapodistrian University of Athens, Athens, GRC
| | - Pavlos Lelovas
- Veterinary Medicine, Laboratory for Research of the Musculoskeletal System, School of Medicine, National and Kapodistrian University of Athens, Athens, GRC
| | - Sofia Parara
- Plastic Surgery, Laboratory for Research of the Musculoskeletal System, School of Medicine, National and Kapodistrian University of Athens, Athens, GRC
| | - Antonios Galanos
- Epidemiology and Public Health, Laboratory for Research of the Musculoskeletal System, School of Medicine, National and Kapodistrian University of Athens, Athens, GRC
| | - Georgios Agrogiannis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, GRC
| | - Dimitris Goutas
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, GRC
| | - Georgios Charalambidis
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes University Campus, Heraklion, GRC
| | - Vasilis Nikolaou
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes University Campus, Heraklion, GRC
| | - Georgios Landrou
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes University Campus, Heraklion, GRC
| | - Chrysoula Kokotidou
- Department of Materials Science and Technology, University of Crete, Voutes University Campus, Heraklion, GRC
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, GRC
| | - Chrysanthi-Pinelopi Apostolidou
- Department of Materials Science and Technology, University of Crete, Voutes University Campus, Heraklion, GRC
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, GRC
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, Voutes University Campus, Heraklion, GRC
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, GRC
| | - Athanassios G Coutsolelos
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes University Campus, Heraklion, GRC
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, GRC
| |
Collapse
|
6
|
Wang Y, Geng Q, Zhang Y, Adler-Abramovich L, Fan X, Mei D, Gazit E, Tao K. Fmoc-diphenylalanine gelating nanoarchitectonics: A simplistic peptide self-assembly to meet complex applications. J Colloid Interface Sci 2023; 636:113-133. [PMID: 36623365 DOI: 10.1016/j.jcis.2022.12.166] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
9-fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF), has been has been extensively explored due to its ultrafast self-assembly kinetics, inherent biocompatibility, tunable physicochemical properties, and especially, the capability of forming self-sustained gels under physiological conditions. Consequently, various methodologies to develop Fmoc-FF gels and their corresponding applications in biomedical and industrial fields have been extensively studied. Herein, we systemically summarize the mechanisms underlying Fmoc-FF self-assembly, discuss the preparation methodologies of Fmoc-FF hydrogels, and then deliberate the properties as well as the diverse applications of Fmoc-FF self-assemblies. Finally, the contemporary shortcomings which limit the development of Fmoc-FF self-assembly are raised and the alternative solutions are proposed, along with future research perspectives.
Collapse
Affiliation(s)
- Yunxiao Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
| | - Qiang Geng
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Yan Zhang
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| | - Xinyuan Fan
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman, Tel Aviv University, 6997801 Tel Aviv, Israel; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| |
Collapse
|
7
|
Shinde SD, Kulkarni N, Sahu B. Synthesis and Investigation of Backbone Modified Squaramide Dipeptide Self-Assembly. ACS APPLIED BIO MATERIALS 2023; 6:507-518. [PMID: 36716238 DOI: 10.1021/acsabm.2c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dipeptides are minimalistic peptide building blocks that form well ordered structures through molecular self-assembly. The driving forces involved are cooperative noncovalent interactions such as π-π stacking, hydrogen bonding, and ionic as well as hydrophobic interactions. One of the most intriguing self-assembled motifs that has been extensively explored as a low molecular weight hydrogel for drug delivery, tissue engineering, imaging and techtonics, etc. is Phe-Phe (FF). The backbone of the dipeptide is very crucial for extending secondary structures in self-assembly, and any subtle change in the backbone drastically affect the molecular recognitions. The squaramide (SQ) motif has the unique advantage of hydrogen bonding which can promote the self-assembly process. In this work we have integrated the SQ unit into the dipeptide FF backbone to achieve molecular self-assembly. The resulting carbamate protected backbone modified dipeptide (BocFSAF-OH, 10) has exhibited molecular self-assembly with a fibrilar network. It formed a stable hydrogel (with CAC of 0.024 ± 0.0098 wt %) via the solvent switch method and was found to possess excellent enzymatic stability. The dipeptide and the resulting hydrogel were found to be cytocompatible. When integrated with a polysaccharide based biopolymer, e.g. sodium alginate, the resulting matrix exhibited strong hydrogel character. Therefore, the dipeptide hydrogel of 10 may find its applications in a variety of fields including drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Suchita Dattatray Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Neeraj Kulkarni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| |
Collapse
|
8
|
Cationic RGD peptidomimetic nanoconjugates as effective tumor targeting gene delivery vectors with antimicrobial potential. Bioorg Chem 2022; 129:106197. [DOI: 10.1016/j.bioorg.2022.106197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 11/22/2022]
|
9
|
Short Peptide-Based Smart Thixotropic Hydrogels †. Gels 2022; 8:gels8090569. [PMID: 36135280 PMCID: PMC9498505 DOI: 10.3390/gels8090569] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/22/2022] Open
Abstract
Thixotropy is a fascinating feature present in many gel systems that has garnered a lot of attention in the medical field in recent decades. When shear stress is applied, the gel transforms into sol and immediately returns to its original state when resting. The thixotropic nature of the hydrogel has inspired scientists to entrap and release enzymes, therapeutics, and other substances inside the human body, where the gel acts as a drug reservoir and can sustainably release therapeutics. Furthermore, thixotropic hydrogels have been widely used in various therapeutic applications, including drug delivery, cornea regeneration and osteogenesis, to name a few. Because of their inherent biocompatibility and structural diversity, peptides are at the forefront of cutting-edge research in this context. This review will discuss the rational design and self-assembly of peptide-based thixotropic hydrogels with some representative examples, followed by their biomedical applications.
Collapse
|
10
|
Diaferia C, Rosa E, Morelli G, Accardo A. Fmoc-Diphenylalanine Hydrogels: Optimization of Preparation Methods and Structural Insights. Pharmaceuticals (Basel) 2022; 15:1048. [PMID: 36145269 PMCID: PMC9505424 DOI: 10.3390/ph15091048] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogels (HGs) are tri-dimensional materials with a non-Newtonian flow behaviour formed by networks able to encapsulate high amounts of water or other biological fluids. They can be prepared using both synthetic or natural polymers and their mechanical and functional properties may change according to the preparation method, the solvent, the pH, and to others experimental parameters. Recently, many short and ultra-short peptides have been investigated as building blocks for the formulation of biocompatible hydrogels suitable for different biomedical applications. Due to its simplicity and capability to gel in physiological conditions, Fmoc-FF dipeptide is one of the most studied peptide hydrogelators. Although its identification dates to 15 ago, its behaviour is currently studied because of the observation that the final material obtained is deeply dependent on the preparation method. To collect information about their formulation, here are reported some different strategies adopted until now for the Fmoc-FF HG preparation, noting the changes in the structural arrangement and behaviour in terms of stiffness, matrix porosity, and stability induced by the different formulation strategy on the final material.
Collapse
Affiliation(s)
| | | | | | - Antonella Accardo
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Via Montesano 49, 80131 Naples, Italy
| |
Collapse
|
11
|
Cheng C, Sun Q, Wang X, He B, Jiang T. Enzyme-manipulated hydrogelation of small molecules for biomedical applications. Acta Biomater 2022; 151:88-105. [PMID: 35970483 DOI: 10.1016/j.actbio.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
Enzyme-manipulated hydrogelation based on self-assembly of small molecules is an attractive methodology for development of functional biomaterials. Upon the catalysis of enzymes, small-molecular precursors are converted into assemblable building blocks, which arrange into high-ordered nanofibers via non-covalent interactions at the molecular level, and further trap water to form hydrogels at the macroscopic level. Such approach has numerous advantages of region- and enantioselectivity, and mild reaction conditions for encapsulation of biomedications or cells that are fragile to environmental change. In addition to the common applications as drug reservoirs or cell scaffolds, the utilization of endogenous enzymes as stimuli to initiate self-assembly in the living cells and tissue is considered as an intelligent spatiotemporally controllable hydrogelation strategy for biomedical applications. The enzyme-instructed in situ self-assembly and hydrogelation can modulate the cell behavior, and even present therapeutic bioactivities, which provides a new perspective in the field of disease treatment. In this review, we categorize distinct enzymatic stimuli and elaborate substrate design, catalytic characteristics, and mechanisms of self-assembly and hydrogelation. The biomedical applications in drug delivery, tissue engineering, bioimaging, and in situ gelation-produced bioactivity are outlined. Advantages and limitations regarding the state-of-the-art enzyme-driven hydrogelation technologies and future perspectives are also discussed. STATEMENT OF SIGNIFICANCE: Hydrogel is a semi-solid soft material containing a large amount of water. Due to the features of adjustable flexibility, extremely porous architecture, and the high similarity of structure to natural extracellular matrices, the hydrogel has broad application prospects in biomedicine. In recent 20 years, enzyme-manipulated hydrogelation based on self-assembly of small molecules has developed rapidly as an attractive methodology for the construction of functional biomaterials. Upon the catalysis of enzymes, small-molecular precursors are converted into assemblable building blocks, which arrange into high-ordered nanofibers via non-covalent interactions at the molecular level, and further trap water to form hydrogels at the macroscopic level. This review summarized the characteristics of enzymatic hydrogel, as well as the traditional application and emerging prospect of enzyme-instructed self-assembly and hydrogelation.
Collapse
Affiliation(s)
- Cheng Cheng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Qingyun Sun
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xiuping Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
12
|
Giraud T, Hoschtettler P, Pickaert G, Averlant-Petit MC, Stefan L. Emerging low-molecular weight nucleopeptide-based hydrogels: state of the art, applications, challenges and perspectives. NANOSCALE 2022; 14:4908-4921. [PMID: 35319034 DOI: 10.1039/d1nr06131c] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last twenty years, low-molecular weight gelators and, in particular, peptide-based hydrogels, have drawn great attention from scientists thanks to both their inherent advantages in terms of properties and their high modularity (e.g., number and nature of the amino acids). These supramolecular hydrogels originate from specific peptide self-assembly processes that can be driven, modulated and optimized via specific chemical modifications brought to the peptide sequence. Among them, the incorporation of nucleobases, another class of biomolecules well-known for their abilities to self-assemble, has recently appeared as a new promising and burgeoning approach to finely design supramolecular hydrogels. In this minireview, we would like to highlight the interest, high potential, applications and perspectives of these innovative and emerging low-molecular weight nucleopeptide-based hydrogels.
Collapse
Affiliation(s)
- Tristan Giraud
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| | | | | | | | - Loic Stefan
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| |
Collapse
|
13
|
Sakurai Y, Sawada T, Serizawa T. Phosphorylase-catalyzed synthesis and self-assembled structures of cellulose oligomers in the presence of protein denaturants. Polym J 2021. [DOI: 10.1038/s41428-021-00592-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
La Manna S, Di Natale C, Onesto V, Marasco D. Self-Assembling Peptides: From Design to Biomedical Applications. Int J Mol Sci 2021; 22:12662. [PMID: 34884467 PMCID: PMC8657556 DOI: 10.3390/ijms222312662] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Self-assembling peptides could be considered a novel class of agents able to harvest an array of micro/nanostructures that are highly attractive in the biomedical field. By modifying their amino acid composition, it is possible to mime several biological functions; when assembled in micro/nanostructures, they can be used for a variety of purposes such as tissue regeneration and engineering or drug delivery to improve drug release and/or stability and to reduce side effects. Other significant advantages of self-assembled peptides involve their biocompatibility and their ability to efficiently target molecular recognition sites. Due to their intrinsic characteristics, self-assembled peptide micro/nanostructures are capable to load both hydrophobic and hydrophilic drugs, and they are suitable to achieve a triggered drug delivery at disease sites by inserting in their structure's stimuli-responsive moieties. The focus of this review was to summarize the most recent and significant studies on self-assembled peptides with an emphasis on their application in the biomedical field.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Concetta Di Natale
- Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci, 53, 80125 Napoli, Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Università di Napoli Federico II, Piazzale Tecchio, 80, 80125 Napoli, Italy
| | - Valentina Onesto
- Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, CNR NANOTEC, via Monteroni, c/o Campus Ecotekne, 73100 Lecce, Italy;
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy;
| |
Collapse
|
15
|
Wang X, Liu X, Ma Z, Mu C, Li W. Photochromic and photothermal hydrogels derived from natural amino acids and heteropoly acids. SOFT MATTER 2021; 17:10140-10148. [PMID: 34730172 DOI: 10.1039/d1sm01272j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A new class of supramolecular hydrogels have been designed and synthesized via the co-assembly of basic amino acids (AAs) and heteropoly acids (HPAs) under acidic conditions. The formation of gel-like samples is identified using an inverted tube method, rheology, and scanning and transmission electron microscopy. Fourier transform infrared spectroscopy reveals that the structural integrity of the HPAs is maintained during the gelation process. X-ray photoelectron spectroscopy (XPS) and proton nuclear magnetic resonance spectroscopy demonstrate that the anionic HPAs interact with both the protonated α-NH2 and the protonated side groups of the basic amino acids, initiating the preferential growth of one-dimensional nanofibers. These nanofibers bundle and entangle with each other to form extended three-dimensional network structures. The resulting AA/HPA supramolecular hydrogels show clear stereoselectivity of the basic amino acids. With the decreasing enantiomeric excess of the basic amino acids, the gelation propensity of the AA/HPA complexes is found to be depressed. The co-assembled hydrogels show the UV-responsive photochromic behaviour because of the presence of HPAs. The corresponding XPS data confirm that the photochromism of the hydrogels is attributed to the intervalence charge-transfer transition resulting from the reduction of HPAs. Interestingly, the reduced HPAs within the hydrogel matrix can absorb the near-infrared (NIR) light and exhibit photo-thermal conversion properties, which elevates the bulk temperature of the AA/HPA hydrogels and induces the gel-to-sol transition. This study unveils that HPAs have unique capacity to promote the gelation of basic amino acids for the construction of supramolecular soft materials with functional features.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Xiaohuan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Zhiyuan Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Chuanling Mu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| |
Collapse
|
16
|
Giraud T, Bouguet-Bonnet S, Stébé MJ, Richaudeau L, Pickaert G, Averlant-Petit MC, Stefan L. Co-assembly and multicomponent hydrogel formation upon mixing nucleobase-containing peptides. NANOSCALE 2021; 13:10566-10578. [PMID: 34100504 DOI: 10.1039/d1nr02417e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Peptide-based hydrogels are physical gels formed through specific supramolecular self-assembling processes, leading to ordered nanostructures which constitute the water entrapping scaffold of the soft material. Thanks to the inherent properties of peptides, these hydrogels are highly considered in the biomedical domain and open new horizons in terms of application in advanced therapies and biotechnologies. The use of one, and only one, native peptide to formulate a gel is by far the most reported approach to design such materials, but suffers from several limitations, including in terms of mechanical properties. To improve peptide-based hydrogels interest and give rise to innovative properties, several strategies have been proposed in the recent years, and the development of multicomponent peptide-based hydrogels appears as a promising and relevant strategy. Indeed, mixing two or more compounds to develop new materials is a much-used approach that has proven its effectiveness in a wide variety of domains, including polymers, composites and alloys. While still limited to a handful of examples, we would like to report herein on the formulation and the comprehensive study of multicomponent hybrid DNA-nucleobase/peptide-based hydrogels using a multiscale approach based on a large panel of analytical techniques (i.e., rheometry, proton relaxometry, SAXS, electronic microscopy, infrared, circular dichroism, fluorescence, Thioflavin T assays). Among the six multicomponent systems studied, the results highlight the synergistic role of the presence of the two complementary DNA-nucleobases (i.e., adenine/thymine and guanine/cytosine) on the co-assembling process from structural (e.g., morphology of the nanoobjects) to physicochemical (e.g., kinetics of formation, fluorescence properties) and mechanical (e.g., stiffness, resistance to external stress) properties. All the data confirm the relevance of the multicomponent peptide-based approach in the design of innovative hydrogels and bring another brick in the wall of the understanding of these complex and promising systems.
Collapse
Affiliation(s)
- Tristan Giraud
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| | | | | | | | | | | | - Loic Stefan
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| |
Collapse
|
17
|
Kubota R, Tanaka W, Hamachi I. Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chem Rev 2021; 121:14281-14347. [DOI: 10.1021/acs.chemrev.0c01334] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wataru Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
18
|
Dao TPT, Vezenkov L, Subra G, Ladmiral V, Semsarilar M. Nano-assemblies with core-forming hydrophobic polypeptide via polymerization-induced self-assembly (PISA). Polym Chem 2021. [DOI: 10.1039/d0py00793e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The aim of this study is to produce self-assembled structures with hydrophobic polypeptide cores via Reversible Addition–Fragmentation chain Transfer (RAFT) – mediated Polymerisation-Induced Self-Assembly (PISA).
Collapse
Affiliation(s)
| | - Lubomir Vezenkov
- Institut des Biomolécules Max Mousseron
- IBMM
- Univ Montpellier
- CNRS
- ENSCM
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron
- IBMM
- Univ Montpellier
- CNRS
- ENSCM
| | - Vincent Ladmiral
- Institut Charles Gerhardt Montpellier
- ICGM
- Univ Montpellier
- CNRS
- ENSCM
| | | |
Collapse
|
19
|
Higashi SL, Rozi N, Hanifah SA, Ikeda M. Supramolecular Architectures of Nucleic Acid/Peptide Hybrids. Int J Mol Sci 2020; 21:E9458. [PMID: 33322664 PMCID: PMC7763079 DOI: 10.3390/ijms21249458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Supramolecular architectures that are built artificially from biomolecules, such as nucleic acids or peptides, with structural hierarchical orders ranging from the molecular to nano-scales have attracted increased attention in molecular science research fields. The engineering of nanostructures with such biomolecule-based supramolecular architectures could offer an opportunity for the development of biocompatible supramolecular (nano)materials. In this review, we highlighted a variety of supramolecular architectures that were assembled from both nucleic acids and peptides through the non-covalent interactions between them or the covalently conjugated molecular hybrids between them.
Collapse
Affiliation(s)
- Sayuri L. Higashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
| | - Normazida Rozi
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.R.); (S.A.H.)
| | - Sharina Abu Hanifah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.R.); (S.A.H.)
| | - Masato Ikeda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Institute for Glyco-Core Research (iGCORE), Gifu University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
20
|
Das AK, Gavel PK. Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications. SOFT MATTER 2020; 16:10065-10095. [PMID: 33073836 DOI: 10.1039/d0sm01136c] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this review, we have focused on the design and development of low molecular weight self-assembling peptide-based materials for various applications including cell proliferation, tissue engineering, antibacterial, antifungal, anti-inflammatory, anticancer, wound healing, drug delivery, bioimaging and 3D bioprinting. The first part of the review describes about stimuli and various noncovalent interactions, which are the key components of various self-assembly processes for the construction of organized structures. Subsequently, the chemical functionalization of the peptides has been discussed, which is required for the designing of self-assembling peptide-based soft materials. Various low molecular weight self-assembling peptides have been discussed to explain the important structural features for the construction of defined functional nanostructures. Finally, we have discussed various examples of low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, anticancer, wound healing, drug delivery, bioimaging and 3D bioprinting applications.
Collapse
Affiliation(s)
- Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | | |
Collapse
|
21
|
Giraud T, Bouguet-Bonnet S, Marchal P, Pickaert G, Averlant-Petit MC, Stefan L. Improving and fine-tuning the properties of peptide-based hydrogels via incorporation of peptide nucleic acids. NANOSCALE 2020; 12:19905-19917. [PMID: 32985645 DOI: 10.1039/d0nr03483e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Peptide self-assemblies have attracted intense research interest over the last few decades thanks to their implications in key biological processes (e.g., amyloid formation) and their use in biotechnological and (bio)material fields. In particular, peptide-based hydrogels have been highly considered as high potential supramolecular materials in the biomedical domain and open new horizons in terms of applications. To further understand their self-assembly mechanisms and to optimize their properties, several strategies have been proposed with the modification of the constituting amino acid chains via, per se, the introduction of d-amino acids, halogenated amino acids, pseudopeptide bonds, or other chemical moieties. In this context, we report herein on the incorporation of DNA-nucleobases into their peptide nucleic acid (PNA) forms to develop a new series of hybrid nucleopeptides. Thus, depending on the nature of the nucleobase (i.e., thymine, cytosine, adenine or guanine), the physicochemical and mechanical properties of the resulting hydrogels can be significantly improved and fine-tuned with, for instance, drastic enhancements of both the gel stiffness (up to 70-fold) and the gel resistance to external stress (up to 40-fold), and the generation of both thermo-reversible and uncommon red-edge excitation shift (REES) properties. To decipher the actual role of each PNA moiety in the self-assembly processes, the induced modifications from the molecular to the macroscopic scales are studied thanks to the multiscale approach based on a large panel of analytical techniques (i.e., rheology, NMR relaxometry, TEM, thioflavin T assays, FTIR, CD, fluorescence, NMR chemical shift index). Thus, such a strategy provides new opportunities to adapt and fit hydrogel properties to the intended ones and pushes back the limits of supramolecular materials.
Collapse
Affiliation(s)
- Tristan Giraud
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| | | | | | | | | | | |
Collapse
|
22
|
Ohtomi T, Higashi SL, Mori D, Shibata A, Kitamura Y, Ikeda M. Effect of side chain phenyl group on the self‐assembled morphology of dipeptide hydrazides. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Taku Ohtomi
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology Gifu University Gifu Japan
| | - Sayuri L. Higashi
- United Graduate School of Drug Discovery and Medical Information Sciences Gifu University Gifu Japan
| | - Daisuke Mori
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology Gifu University Gifu Japan
| | - Aya Shibata
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology Gifu University Gifu Japan
| | - Yoshiaki Kitamura
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology Gifu University Gifu Japan
| | - Masato Ikeda
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology Gifu University Gifu Japan
- United Graduate School of Drug Discovery and Medical Information Sciences Gifu University Gifu Japan
- Center for Highly Advanced Integration of Nano and Life Sciences Gifu University (G‐CHAIN) Gifu Japan
- Institute of Nano‐Life‐Systems, Institute of Innovation for Future Society Nagoya University Nagoya Japan
- Institute for Glyco‐core Research (iGCORE) Gifu University Nagoya Japan
| |
Collapse
|
23
|
Das R, Gayakvad B, Shinde SD, Rani J, Jain A, Sahu B. Ultrashort Peptides—A Glimpse into the Structural Modifications and Their Applications as Biomaterials. ACS APPLIED BIO MATERIALS 2020; 3:5474-5499. [DOI: 10.1021/acsabm.0c00544] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Bhavinkumar Gayakvad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Suchita Dattatray Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Jyoti Rani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| |
Collapse
|
24
|
Michel SSE, Kilner A, Eloi JC, Rogers SE, Briscoe WH, Galan MC. Norbornene-Functionalized Chitosan Hydrogels and Microgels via Unprecedented Photoinitiated Self-Assembly for Potential Biomedical Applications. ACS APPLIED BIO MATERIALS 2020; 3:5253-5262. [PMID: 35021700 DOI: 10.1021/acsabm.0c00629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Access to biocompatible self-assembled gels and microgels is of great interests for a variety of biological applications from tissue engineering to drug delivery. Here, the facile synthesis of supramolecular hydrogels of norbornene (nb)-functionalized chitosan (CS-nb) via UV-triggered self-assembly in the presence of Irgacure 2959 (IRG) is reported. The in vitro stable hydrogels are injectable and showed pH-responsive swelling behavior, while their structure and mechanical properties could be tuned by tailoring the stereochemistry of the norbornene derivative (e.g., endo- or -exo). Interestingly, unlike other nb-type hydrogels, the gels possess nanopores within their structure, which might lead to potential drug delivery applications. A gelation mechanism was proposed based on hydrophobic interactions following the combination of IRG on norbornene, as supported by 1H NMR. This self-assembly mechanism was used to access microgels of size 100-150 nm, which could be further functionalized and showed no significant toxicity to human dermofibroblast cells.
Collapse
Affiliation(s)
- Sarah S E Michel
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS81TS, U.K
| | - Alice Kilner
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS81TS, U.K
| | - Jean-Charles Eloi
- Chemical Imaging Facility, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS81TS, U.K
| | - Sarah E Rogers
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS81TS, U.K
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS81TS, U.K
| |
Collapse
|
25
|
Rosa E, Diaferia C, Gallo E, Morelli G, Accardo A. Stable Formulations of Peptide-Based Nanogels. Molecules 2020; 25:E3455. [PMID: 32751321 PMCID: PMC7435922 DOI: 10.3390/molecules25153455] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Recently, nanogels have been identified as innovative formulations for enlarging the application of hydrogels (HGs) in the area of drug delivery or in diagnostic imaging. Nanogels are HGs-based aggregates with sizes in the range of nanometers and formulated in order to obtain injectable preparations. Regardless of the advantages offered by peptides in a hydrogel preparation, until now, only a few examples of peptide-based nanogels (PBNs) have been developed. Here, we describe the preparation of stable PBNs based on Fmoc-Phe-Phe-OH using three different methods, namely water/oil emulsion (W/O), top-down, and nanogelling in water. The effect of the hydrophilic-lipophilic balance (HLB) in the formulation was also evaluated in terms of size and stability. The resulting nanogels were found to encapsulate the anticancer drug doxorubicin, chosen as the model drug, with a drug loading comparable with those of the liposomes.
Collapse
Affiliation(s)
- Elisabetta Rosa
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, via Mezzocannone 16, 80134 Naples, Italy; (E.R.); (C.D.); (G.M.)
| | - Carlo Diaferia
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, via Mezzocannone 16, 80134 Naples, Italy; (E.R.); (C.D.); (G.M.)
| | - Enrico Gallo
- IRCCS SDN, Via E. Gianturco 113, 80143 Naples, Italy;
| | - Giancarlo Morelli
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, via Mezzocannone 16, 80134 Naples, Italy; (E.R.); (C.D.); (G.M.)
| | - Antonella Accardo
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, via Mezzocannone 16, 80134 Naples, Italy; (E.R.); (C.D.); (G.M.)
| |
Collapse
|
26
|
Zhang J, Huang C, Chen Y, Wang H, Gong Z, Chen W, Ge H, Hu X, Zhang X. Polyvinyl alcohol: a high-resolution hydrogel resist for humidity-sensitive micro-/nanostructure. NANOTECHNOLOGY 2020; 31:425303. [PMID: 32554892 DOI: 10.1088/1361-6528/ab9da7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A high-resolution nanopatterning technique is desirable with the present rapid development of hydrogel nanodevices. Here, we demonstrate that polyvinyl alcohol (PVA), a popular polymeric hydrogel, can function as the negative-tone resist for electron beam lithography (EBL) with a resolution capability as narrow as 50 nm half-pitch. Furthermore, the hydrophilic groups of PVA are stable after EBL exposure, and thus the pattern still shows rapid responsivity to humidity change. An aqueous nanopatterning process including dissolution, spin-coating and development is setup, which is friendly for organic device fabrication free of organic solvent. This high-resolution nanopatterning technique with PVA is helpful for the design and realization of hydrogel-related nanodevices in the future.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Advanced Magnetic Materials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gupta S, Singh I, Sharma AK, Kumar P. Ultrashort Peptide Self-Assembly: Front-Runners to Transport Drug and Gene Cargos. Front Bioeng Biotechnol 2020; 8:504. [PMID: 32548101 PMCID: PMC7273840 DOI: 10.3389/fbioe.2020.00504] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
The translational therapies to promote interaction between cell and signal come with stringent eligibility criteria. The chemically defined, hierarchically organized, and simpler yet blessed with robust intermolecular association, the peptides, are privileged to make the cut-off for sensing the cell-signal for biologics delivery and tissue engineering. The signature service and insoluble network formation of the peptide self-assemblies as hydrogels have drawn a spell of research activity among the scientists all around the globe in the past decades. The therapeutic peptide market players are anticipating promising growth opportunities due to the ample technological advancements in this field. The presence of the other organic moieties, enzyme substrates and well-established protecting groups like Fmoc and Boc etc., bring the best of both worlds. Since the large sequences of peptides severely limit the purification and their isolation, this article reviews the account of last 5 years' efforts on novel approaches for formulation and development of single molecule amino acids, ultra-short peptide self-assemblies (di- and tri- peptides only) and their derivatives as drug/gene carriers and tissue-engineering systems.
Collapse
Affiliation(s)
- Seema Gupta
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Indu Singh
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Ashwani K. Sharma
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
28
|
Askari E, Seyfoori A, Amereh M, Gharaie SS, Ghazali HS, Ghazali ZS, Khunjush B, Akbari M. Stimuli-Responsive Hydrogels for Local Post-Surgical Drug Delivery. Gels 2020; 6:E14. [PMID: 32397180 PMCID: PMC7345431 DOI: 10.3390/gels6020014] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Currently, surgical operations, followed by systemic drug delivery, are the prevailing treatment modality for most diseases, including cancers and trauma-based injuries. Although effective to some extent, the side effects of surgery include inflammation, pain, a lower rate of tissue regeneration, disease recurrence, and the non-specific toxicity of chemotherapies, which remain significant clinical challenges. The localized delivery of therapeutics has recently emerged as an alternative to systemic therapy, which not only allows the delivery of higher doses of therapeutic agents to the surgical site, but also enables overcoming post-surgical complications, such as infections, inflammations, and pain. Due to the limitations of the current drug delivery systems, and an increasing clinical need for disease-specific drug release systems, hydrogels have attracted considerable interest, due to their unique properties, including a high capacity for drug loading, as well as a sustained release profile. Hydrogels can be used as local drug performance carriers as a means for diminishing the side effects of current systemic drug delivery methods and are suitable for the majority of surgery-based injuries. This work summarizes recent advances in hydrogel-based drug delivery systems (DDSs), including formulations such as implantable, injectable, and sprayable hydrogels, with a particular emphasis on stimuli-responsive materials. Moreover, clinical applications and future opportunities for this type of post-surgery treatment are also highlighted.
Collapse
Affiliation(s)
- Esfandyar Askari
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran P.O. Box 1517964311, Iran;
| | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (M.A.); (S.S.G.); (B.K.)
| | - Meitham Amereh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (M.A.); (S.S.G.); (B.K.)
| | - Sadaf Samimi Gharaie
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (M.A.); (S.S.G.); (B.K.)
| | - Hanieh Sadat Ghazali
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran P.O. Box 16846-13114, Iran;
| | - Zahra Sadat Ghazali
- Biomedical Engineering Department, Amirkabir University of Technology (AUT), Tehran P.O. Box 158754413, Iran;
| | - Bardia Khunjush
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (M.A.); (S.S.G.); (B.K.)
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (M.A.); (S.S.G.); (B.K.)
- Center for Biomedical Research, University of Victoria, Victoria, BC V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|