1
|
Arango MC, Jaramillo-Quiceno N, Badia JD, Cháfer A, Cerisuelo JP, Álvarez-López C. The Impact of Green Physical Crosslinking Methods on the Development of Sericin-Based Biohydrogels for Wound Healing. Biomimetics (Basel) 2024; 9:497. [PMID: 39194476 DOI: 10.3390/biomimetics9080497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Silk sericin (SS)-based hydrogels show promise for wound healing due to their biocompatibility, moisture regulation, and cell proliferation properties. However, there is still a need to develop green crosslinking methods to obtain non-toxic, absorbent, and mechanically strong SS hydrogels. This study investigated the effects of three green crosslinking methods, annealing treatment (T), exposure to an absolute ethanol vapor atmosphere (V.E), and water vapor (V.A), on the physicochemical and mechanical properties of SS and poly (vinyl alcohol) (PVA) biohydrogels. X-ray diffraction and Fourier-transform infrared spectroscopy were used to determine chemical structures. Thermal properties and morphological changes were studied through thermogravimetric analysis and scanning electron microscopy, respectively. The water absorption capacity, mass loss, sericin release in phosphate-buffered saline (PBS), and compressive strength were also evaluated. The results showed that physical crosslinking methods induced different structural transitions in the biohydrogels, impacting their mechanical properties. In particular, V.A hydrogen presented the highest compressive strength at 80% deformation owing to its compact and porous structure with crystallization and bonding sites. Moreover, both the V.A and T hydrogels exhibited improved absorption capacity, stability, and slow SS release in PBS. These results demonstrate the potential of green physical crosslinking techniques for producing SS/PVA biomaterials for wound healing applications.
Collapse
Affiliation(s)
- Maria C Arango
- Agroindustrial Research Group, Department of Chemical Engineering, Universidad Pontificia Bolivariana, Cq. 1 #70-01, Medellín 050031, Colombia
- Materials Technology and Sustainability (MATS), Department of Chemical Engineering, Universitat de València, Av. de la Universitat s/n, 46100 Burjassot, Spain
| | - Natalia Jaramillo-Quiceno
- Agroindustrial Research Group, Department of Chemical Engineering, Universidad Pontificia Bolivariana, Cq. 1 #70-01, Medellín 050031, Colombia
| | - José David Badia
- Materials Technology and Sustainability (MATS), Department of Chemical Engineering, Universitat de València, Av. de la Universitat s/n, 46100 Burjassot, Spain
| | - Amparo Cháfer
- Materials Technology and Sustainability (MATS), Department of Chemical Engineering, Universitat de València, Av. de la Universitat s/n, 46100 Burjassot, Spain
| | - Josep Pasqual Cerisuelo
- Materials Technology and Sustainability (MATS), Department of Chemical Engineering, Universitat de València, Av. de la Universitat s/n, 46100 Burjassot, Spain
| | - Catalina Álvarez-López
- Agroindustrial Research Group, Department of Chemical Engineering, Universidad Pontificia Bolivariana, Cq. 1 #70-01, Medellín 050031, Colombia
| |
Collapse
|
2
|
Deb D, Khatun B, M BD, Khan MR, Sen Sarma N, Sankaranarayanan K. Utilizing Silk Sericin as a Biomaterial for Drug Encapsulation in a Hydrogel Matrix with Polycaprolactone: Formulation and Evaluation of Antibacterial Activity. ACS OMEGA 2024; 9:32706-32716. [PMID: 39100358 PMCID: PMC11292657 DOI: 10.1021/acsomega.4c02453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 08/06/2024]
Abstract
Hydrogels have emerged as a potential tool for enhancing bioavailability and regulating the controlled release of therapeutic agents. Owing to its excellent biocompatibility, silk sericin-based hydrogels have garnered interest in biomedical applications. This study focuses on synthesizing a soft hydrogel by blending silk sericin (SS) and polycaprolactone (PCL) at room temperature. The physicochemical characteristics of the hydrogels have been estimated by different analytical techniques such as UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The rheological studies demonstrate the non-Newtonian behavior of the hydrogels. Further, the porosity analysis indicates a commendable absorption capacity of the hydrogels. The swelling degree of the hydrogels has been checked in both distilled water and buffer solutions of different pHs (2-10). Moreover, the drug release profile of the hydrogels, using diclofenac sodium (DS) as a model drug, has revealed a substantial release of approximately 67% within the first 130 min with a drug encapsulation efficiency of 60.32%. Moreover, both the empty and the drug-loaded hydrogels have shown antibacterial properties against Gram-positive and Gram-negative bacteria, with the drug-loaded hydrogels displaying enhanced effectiveness. Additionally, the prepared hydrogels are biodegradable, demonstrating their future prospects in biomedical applications.
Collapse
Affiliation(s)
- Dona Deb
- Institute
of Advanced Study in Science and Technology (An Autonomous Institute
Under DST, Govt. of India), Vigyan Path, Paschim Boragaon,
Garchuk, Guwahati 781035, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bably Khatun
- Institute
of Advanced Study in Science and Technology (An Autonomous Institute
Under DST, Govt. of India), Vigyan Path, Paschim Boragaon,
Garchuk, Guwahati 781035, Assam, India
| | - Bidyarani Devi M
- Institute
of Advanced Study in Science and Technology (An Autonomous Institute
Under DST, Govt. of India), Vigyan Path, Paschim Boragaon,
Garchuk, Guwahati 781035, Assam, India
| | - Mojibur R. Khan
- Institute
of Advanced Study in Science and Technology (An Autonomous Institute
Under DST, Govt. of India), Vigyan Path, Paschim Boragaon,
Garchuk, Guwahati 781035, Assam, India
| | - Neelotpal Sen Sarma
- Institute
of Advanced Study in Science and Technology (An Autonomous Institute
Under DST, Govt. of India), Vigyan Path, Paschim Boragaon,
Garchuk, Guwahati 781035, Assam, India
| | - Kamatchi Sankaranarayanan
- Institute
of Advanced Study in Science and Technology (An Autonomous Institute
Under DST, Govt. of India), Vigyan Path, Paschim Boragaon,
Garchuk, Guwahati 781035, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Saad M, El-Samad LM, Gomaa RA, Augustyniak M, Hassan MA. A comprehensive review of recent advances in silk sericin: Extraction approaches, structure, biochemical characterization, and biomedical applications. Int J Biol Macromol 2023; 250:126067. [PMID: 37524279 DOI: 10.1016/j.ijbiomac.2023.126067] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Silks are natural polymers that have been widely used for centuries. Silk consists of a filament core protein, termed fibroin, and a glue-like coating substance formed of sericin (SER) proteins. This protein is extracted from the silkworm cocoons (particularly Bombyx mori) and is mainly composed of amino acids like glycine, serine, aspartic acid, and threonine. Silk SER can be obtained using numerous methods, including enzymatic extraction, high-temperature, autoclaving, ethanol precipitation, cross-linking, and utilizing acidic, alkali, or neutral aqueous solutions. Given the versatility and outstanding properties of SER, it is widely fabricated to produce sponges, films, and hydrogels for further use in diverse biomedical applications. Hence, many authors reported that SER benefits cell proliferation, tissue engineering, and skin tissue restoration thanks to its moisturizing features, antioxidant and anti-inflammatory properties, and mitogenic effect on mammalian cells. Remarkably, SER is used in drug delivery depending on its chemical reactivity and pH-responsiveness. These unique features of SER enhance the bioactivity of drugs, facilitating the fabrication of biomedical materials at nano- and microscales, hydrogels, and conjugated molecules. This review thoroughly outlines the extraction techniques, biological properties, and respective biomedical applications of SER.
Collapse
Affiliation(s)
- Marwa Saad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Rehab A Gomaa
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| |
Collapse
|
4
|
Gaviria A, Jaramillo-Quiceno N, Motta A, Restrepo-Osorio A. Silk wastes and autoclaved degumming as an alternative for a sustainable silk process. Sci Rep 2023; 13:15296. [PMID: 37714876 PMCID: PMC10504296 DOI: 10.1038/s41598-023-41762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023] Open
Abstract
Silk degumming is considered the first point in the preparation of silk-based materials since this process could modify the silk fiber and the properties of its related products. This study evaluated the differences in morphology, secondary structure, amino acid content, thermal stability, and mechanical properties of two types of raw materials, defective cocoons (DC) and silk fibrous waste (SW), degummed by chemical (C) and autoclaving (A) methods. Subsequently, silk fibroin films were prepared by dissolving each type of degummed fibers, and thermal and structural films properties were determined. The findings demonstrated that autoclaving is an efficient alternative to remove silk sericin, as the resulting fibers presented improved structural, thermal, and mechanical properties compared to those obtained by the chemical method. For films preparation, autoclave resulted in a good option, but dissolution parameters need to be adjusted for defective cocoons. Furthermore, similarities between the physicochemical properties of fibers and films from both fibrous wastes suggest that SW is a promising raw material for producing fibrous resources and regenerated silk fibroin materials. Overall, these findings suggest new recycling methods for fibrous waste and by-products generated in the silk textile production process.
Collapse
Affiliation(s)
- A Gaviria
- Grupo de Investigación sobre Nuevos Materiales - GINUMA, Universidad Pontificia Bolivariana, Circular 1a 70-01, 050031, Medellín, Colombia
| | - Natalia Jaramillo-Quiceno
- Grupo de Investigaciones Agroindustriales - GRAIN, Universidad Pontificia Bolivariana, Circular 1a 70-01, 050031, Medellín, Colombia
| | - Antonella Motta
- BIOtech Research Centre and European Institute of Excellence On Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering, University of Trento, Via Delle Regole 101, 38123, Trento, Italy
| | - Adriana Restrepo-Osorio
- Grupo de Investigación sobre Nuevos Materiales - GINUMA, Universidad Pontificia Bolivariana, Circular 1a 70-01, 050031, Medellín, Colombia.
- Facultad de Ingeniería Química. Escuela de Ingenierías, Universidad Pontificia Bolivariana, Medellin, Colombia.
| |
Collapse
|
5
|
Jaramillo-Quiceno N, Álvarez-López C, Hincapié-Llanos GA, Hincapié CA, Osorio M. Characterization of a New Silk Sericin-Based Hydrogel for Water Retention in Soil. Polymers (Basel) 2023; 15:2763. [PMID: 37447409 DOI: 10.3390/polym15132763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Hydrogel-type absorbent materials are currently a technological alternative for improving water retention in the soil and reducing nutrient loss by leaching and evaporation. This study aimed to evaluate the application of a new hydrogel based on silk sericin (SS) as a water retention material in soil. The morphology of the hydrogel was characterized using Scanning Electron Microscopy (SEM), and its impact on moisture retention in sandy loam soil (SLS) under different levels of matric pressure (MP) was evaluated. Additionally, water content data were collected over time for both SLS and SLS with hydrogel (SLS + H), and the data were used to fit predictive models. The results indicate that the hydrogel had a porous morphology that promoted water retention and soil release. Under a MP of 0.3 bar, the use of the hydrogel increased water retention by 44.70% with respect to that of SLS. The predictive models developed were adequately adjusted to the behavior of the moisture data over time and evidenced the incidence of the absorbent material on the dynamics of the moisture content in the soil. Therefore, these models could be useful for facilitating subsequent simulations or for designing automatic soil moisture control systems oriented to smart farming.
Collapse
Affiliation(s)
- Natalia Jaramillo-Quiceno
- Grupo de Investigación Sobre Nuevos Materiales, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
- Grupo de Investigaciones Agroindustriales (GRAIN), Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| | - Catalina Álvarez-López
- Grupo de Investigación Sobre Nuevos Materiales, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
- Grupo de Investigaciones Agroindustriales (GRAIN), Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| | | | - Carlos A Hincapié
- Grupo de Investigaciones Agroindustriales (GRAIN), Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| | - Marisol Osorio
- Grupo de Investigación en Gestión de la Tecnología y la Innovación (GTI), Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| |
Collapse
|
6
|
Jaramillo-Quiceno N, Rueda-Mira S, Marín JFS, Álvarez-López C. Development of a novel silk sericin-based hydrogel film by mixture design. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
AbstractSericin has been used in functional and potentially biodegradable materials for cosmetics, biomedical, agricultural, and food applications. It is a natural polymer with applications in absorbent materials, such as hydrogels, because of its hydrophilic character. However, sericin by itself is brittle, and in contact with water has low structural stability, being necessary its blending with other polymers or the application of crosslinking processes. In this work, hydrogel films were prepared from different mixtures containing sericin (SS), carboxymethylcellulose (CMC), and polyvinyl alcohol (PVA), using a simple and environmentally friendly method consisting of a gelling process followed by solvent casting. A mixture design was applied to assess the incidence of each component and its interaction with the output variables of interest. Two response variables were evaluated in each formulation: water absorption capacity (WA) and gel fraction (GF). It was also possible to model the output variables based on the proportions of the sample components. In addition, a set of formulations were used to produce hydrogels with high water absorption rates while maintaining their structural stability. The optimal hydrogel formulation (HF) was structurally and thermally characterized by FTIR and TGA, respectively. Hydrogel morphology was also studied by scanning electron microscopy (SEM). The results of this study constitute an important contribution to the design of novel processing routes to extend the use of silk sericin in the development of new materials.
Collapse
|
7
|
Ghaffari-Bohlouli P, Jafari H, Taebnia N, Abedi A, Amirsadeghi A, Niknezhad SV, Alimoradi H, Jafarzadeh S, Mirzaei M, Nie L, Zhang J, Varma RS, Shavandi A. Protein by-products: Composition, extraction, and biomedical applications. Crit Rev Food Sci Nutr 2022; 63:9436-9481. [PMID: 35546340 DOI: 10.1080/10408398.2022.2067829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Significant upsurge in animal by-products such as skin, bones, wool, hides, feathers, and fats has become a global challenge and, if not properly disposed of, can spread contamination and viral diseases. Animal by-products are rich in proteins, which can be used as nutritional, pharmacologically functional ingredients, and biomedical materials. Therefore, recycling these abundant and renewable by-products and extracting high value-added components from them is a sustainable approach to reclaim animal by-products while addressing scarce landfill resources. This article appraises the most recent studies conducted in the last five years on animal-derived proteins' separation and biomedical application. The effort encompasses an introduction about the composition, an overview of the extraction and purification methods, and the broad range of biomedical applications of these ensuing proteins.
Collapse
Affiliation(s)
| | - Hafez Jafari
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| | - Nayere Taebnia
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ali Abedi
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Armin Amirsadeghi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Houman Alimoradi
- School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sina Jafarzadeh
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mahta Mirzaei
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| | - Lei Nie
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
| | - Amin Shavandi
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| |
Collapse
|