Zhang Z, Zhou Y, Wang Y, Zhang L, Li Y, Wang G, Ji H, Liu Y. Characterization of a group of peptides for potential applications in hydrogen phosphate and heavy metals accumulation.
CHEMOSPHERE 2020;
246:125735. [PMID:
31911327 DOI:
10.1016/j.chemosphere.2019.125735]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/04/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Phosphorus and heavy metals are discarded to the domestic sewage in our daily life, it is necessary to find easy methods for phosphorus and heavy metals accumulation. Here, a group of short peptides (ChBpHs) were found to react with hydrogen phosphate forming insoluble substances. ChBpHs are composed by a choline binding peptides (ChBp) and a C-terminal histidine rich tail. The reaction region to hydrogen phosphate was determined at 1-18th amino acid in ChBp. The affinities of ChBpHs are different, with minimum react concentrations of Na2HPO4 ranging from 2 to 12 mM. In addition, the C-terminal histidine tail enables ChBpHs with affinities to metal ions in vitro. Prokaryotic expression of ChBpH1 in Escherichia coli resulted in the reduction of soluble hydrogen phosphate in the culture medium. The accumulation of phosphate is time and concentration dependent, maximum reduction was detected at 24 h post induction (23% in phosphate rich medium and 14% in normal medium). The reduction of nickel ions (about 20%) was only detected after cells were broken. In conclusion, this preliminary investigation of ChBpHs indicates the potential applications for bioconcentration of soluble phosphate in the future.
Collapse