1
|
Lu Y, Duan MH, Zhao X, Zhang Y, Yang Y, Xu R, Kang YS, Wang ZL, Zhang YZ, Li CW. Pestiorosins A-F, New Papulacandins Isolated from the Fungus Pestalotiopsis rosea YNJ21. Chem Biodivers 2024:e202401921. [PMID: 39246262 DOI: 10.1002/cbdv.202401921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
Six previously unreported papulacandins, namely pestiorosins A-F (1-6), were isolated from the fermentation products of the fungus Pestalotiopsis rosea YNJ21 isolated from the fruitbody of Amanita exitialis. The structures of these compounds, along with a known compound called pestiocandin (7), were determined using MS, NMR data, and modified Mosher's method. All compounds exhibited significant antifungal activity against Candida albicans, with MIC values ranging from 0.06 to 2.00 μg/mL. In terms of cytotoxicity assays, compounds 3 and 6 demonstrated moderate inhibitory activity against human breast cancer MCF-7 cells with IC50 values of 24.50 and 16.83 μM, respectively. On the other hand, compound 7 displayed similar levels of inhibitory activity against mice microglial BV2 cells with an IC50 value of 24.51 μM.
Collapse
Affiliation(s)
- Yue Lu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Ming-Hua Duan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xue Zhao
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yu Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Rui Xu
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Ya-Shuai Kang
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Zi-Lin Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - You-Zhi Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Chang-Wei Li
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| |
Collapse
|
2
|
Jiang P, Fu X, Niu H, Chen S, Liu F, Luo Y, Zhang D, Lei H. Recent advances on Pestalotiopsis genus: chemistry, biological activities, structure-activity relationship, and biosynthesis. Arch Pharm Res 2023:10.1007/s12272-023-01453-2. [PMID: 37389739 DOI: 10.1007/s12272-023-01453-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Strains of the fungal genus Pestalotiopsis are reported as large promising sources of structurally varied biologically active metabolites. Many bioactive secondary metabolites with diverse structural features have been derived from Pestalotiopsis. Moreover, some of these compounds can potentially be developed into lead compounds. Herein, we have systematically reviewed the chemical constituents and bioactivities of the fungal genus Pestalotiopsis, covering a period ranging from January 2016 to December 2022. As many as 307 compounds, including terpenoids, coumarins, lactones, polyketides, and alkaloids, were isolated during this period. Furthermore, for the benefit of readers, the biosynthesis and potential medicinal value of these new compounds are also discussed in this review. Finally, the perspectives and directions for future research and the potential applications of the new compounds are summarized in various tables.
Collapse
Affiliation(s)
- Peng Jiang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Xiujuan Fu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hong Niu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Siwei Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Feifei Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Yu Luo
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
3
|
Pestalotiopsis Diversity: Species, Dispositions, Secondary Metabolites, and Bioactivities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228088. [PMID: 36432188 PMCID: PMC9695833 DOI: 10.3390/molecules27228088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 11/23/2022]
Abstract
Pestalotiopsis species have gained attention thanks to their structurally complex and biologically active secondary metabolites. In past decades, several new secondary metabolites were isolated and identified. Their bioactivities were tested, including anticancer, antifungal, antibacterial, and nematicidal activity. Since the previous review published in 2014, new secondary metabolites were isolated and identified from Pestalotiopsis species and unidentified strains. This review gathered published articles from 2014 to 2021 and focused on 239 new secondary metabolites and their bioactivities. To date, 384 Pestalotiopsis species have been discovered in diverse ecological habitats, with the majority of them unstudied. Some may contain secondary metabolites with unique bioactivities that might benefit pharmacology.
Collapse
|
4
|
Abstract
Invasive fungal infections in humans are generally associated with high mortality, making the choice of antifungal drug crucial for the outcome of the patient. The limited spectrum of antifungals available and the development of drug resistance represent the main concerns for the current antifungal treatments, requiring alternative strategies. Antimicrobial peptides (AMPs), expressed in several organisms and used as first-line defenses against microbial infections, have emerged as potential candidates for developing new antifungal therapies, characterized by negligible host toxicity and low resistance rates. Most of the current literature focuses on peptides with antibacterial activity, but there are fewer studies of their antifungal properties. This review focuses on AMPs with antifungal effects, including their in vitro and in vivo activities, with the biological repercussions on the fungal cells, when known. The classification of the peptides is based on their mode of action: although the majority of AMPs exert their activity through the interaction with membranes, other mechanisms have been identified, including cell wall inhibition and nucleic acid binding. In addition, antifungal compounds with unknown modes of action are also described. The elucidation of such mechanisms can be useful to identify novel drug targets and, possibly, to serve as the templates for the synthesis of new antimicrobial compounds with increased activity and reduced host toxicity.
Collapse
|
5
|
Gao WB, Han LP, Xie FX, Ma QY, Li XF, Zhang J, Zhao YX, Luo DQ. A New Polyketide-Derived Metabolite with PTP1B Inhibitory Activity from the Endophytic Fungus Pestalotiopsis neglecta. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02892-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Sakai K, Unten Y, Iwatsuki M, Matsuo H, Fukasawa W, Hirose T, Chinen T, Nonaka K, Nakashima T, Sunazuka T, Usui T, Murai M, Miyoshi H, Asami Y, Ōmura S, Shiomi K. Fusaramin, an antimitochondrial compound produced by Fusarium sp., discovered using multidrug-sensitive Saccharomyces cerevisiae. J Antibiot (Tokyo) 2019; 72:645-652. [DOI: 10.1038/s41429-019-0197-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
|
7
|
Cortés JCG, Curto MÁ, Carvalho VSD, Pérez P, Ribas JC. The fungal cell wall as a target for the development of new antifungal therapies. Biotechnol Adv 2019; 37:107352. [PMID: 30797093 DOI: 10.1016/j.biotechadv.2019.02.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/23/2019] [Accepted: 02/16/2019] [Indexed: 12/17/2022]
Abstract
In the past three decades invasive mycoses have globally emerged as a persistent source of healthcare-associated infections. The cell wall surrounding the fungal cell opposes the turgor pressure that otherwise could produce cell lysis. Thus, the cell wall is essential for maintaining fungal cell shape and integrity. Given that this structure is absent in host mammalian cells, it stands as an important target when developing selective compounds for the treatment of fungal infections. Consequently, treatment with echinocandins, a family of antifungal agents that specifically inhibits the biosynthesis of cell wall (1-3)β-D-glucan, has been established as an alternative and effective antifungal therapy. However, the existence of many pathogenic fungi resistant to single or multiple antifungal families, together with the limited arsenal of available antifungal compounds, critically affects the effectiveness of treatments against these life-threatening infections. Thus, new antifungal therapies are required. Here we review the fungal cell wall and its relevance in biotechnology as a target for the development of new antifungal compounds, disclosing the most promising cell wall inhibitors that are currently in experimental or clinical development for the treatment of some invasive mycoses.
Collapse
Affiliation(s)
- Juan Carlos G Cortés
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain.
| | - M-Ángeles Curto
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
| | - Vanessa S D Carvalho
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
| | - Juan Carlos Ribas
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|