1
|
Sakai K, Futamura Y, Nogawa T, Zhao Y, Koshino H, Osada H, Takahashi S. Production of Kinanthraquinone D with Antimalarial Activity by Heterologous Gene Expression and Biotransformation in Streptomyces lividans TK23. JOURNAL OF NATURAL PRODUCTS 2024; 87:855-860. [PMID: 38412225 DOI: 10.1021/acs.jnatprod.3c01076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Two new compounds, kinanthraquinone C (1) and kinanthraquinone D (2), were isolated along with two known compounds, kinanthraquinone (3) and kinanthraquinone B (4), produced by the heterologous expression of the kiq biosynthetic gene cluster and its pathway-specific regulator, kiqA, in Streptomyces lividans TK23. The chemical structures of compounds 1 and 2 were determined using mass spectrometry and nuclear magnetic resonance analyses. To examine a biosynthetic pathway of compounds 1 and 2, incubation experiments were conducted using S. lividans TK23 to supply the compounds 3 and 4. These experiments indicated that compounds 3 and 4 were converted to compounds 2 and 1, respectively, by the endogenous enzymes of S. lividans TK23. Compounds 2, 3, and 4 had antimalarial activities at half-maximal inhibitory concentration values of 0.91, 1.2, and 15 μM, respectively, without cytotoxicity up to 30 μM.
Collapse
Affiliation(s)
- Katsuyuki Sakai
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yushi Futamura
- Chemical Resource Development Unit, REKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Toshihiko Nogawa
- Molecular Structure Characterization Unit, Technology Platform Division, REKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuzhu Zhao
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate School of Science and Engineering, Saitama University; Shimo-Okubo 255, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
| | - Hiroyuki Koshino
- Molecular Structure Characterization Unit, Technology Platform Division, REKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Unit, REKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate School of Science and Engineering, Saitama University; Shimo-Okubo 255, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
| |
Collapse
|
2
|
Ji Y, Liu Y, Guan W, Guo C, Jia H, Hong B, Li H. Enantioselective Divergent Syntheses of Diterpenoid Pyrones. J Am Chem Soc 2024; 146:9395-9403. [PMID: 38497763 DOI: 10.1021/jacs.4c01788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Capitalizing a synergy between late-stage C(sp3)-H alkynylation and a series of transition metal-catalyzed alkyne functionalization reactions, we reported herein enantioselective divergent synthesis of 10 diterpenoid pyrones within 14-16 steps starting from chiral pool enoxolone, including the first enantioselective synthesis of higginsianins A, B, D, E, and metarhizin C. Our synthesis also highlights an unprecedented biomimetic oxidative rearrangement of α-pyrone into 3(2H)-furanone, as well as applications of Echavarren C(sp3)-H alkynylation reaction and Toste chiral counterion-mediated Au-catalyzed intramolecular allene hydroalkoxylation in natural product synthesis.
Collapse
Affiliation(s)
- Yunpeng Ji
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Yaqian Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Weiqiang Guan
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Chuning Guo
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Hongli Jia
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Benke Hong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Houhua Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315010, China
| |
Collapse
|
3
|
Huang M, Ma S, Qiao M, Fu Y, Li Y. Quality Similarity between Induced Agarwood by Fungus and Wild Agarwood. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15620-15631. [PMID: 37750837 DOI: 10.1021/acs.jafc.3c04322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
To prevent the exploitation of wild agarwood, the development of artificial agarwood through fungal inoculation is a promising method, but finding species that produce efficient high-quality agarwood remains difficult. In this study, a fungal inducer was prepared using wild agarwood containing fungi and high-throughput sequencing was performed to determine its species makeup. Subsequently, it was used to inoculate Aquilaria sinensis(Lour.) Spreng. The induced agarwood (IA), wild agarwood (WA), and nonresinous whitewood (WW) were analyzed for the extract content. In addition, liquid and gas chromatography-mass spectrometry was used to determine the chemical composition of the samples. The results were used to evaluate the quality of the IA. Mortierella humilisLinnem. ex W.Gams, Oidiodendron maius(Barron), and Tolypocladium album(W. Gams) Quandt, Kepler, and Spatafora were the fungal inducers that were discovered to produce agarwood. The extracts from the IA and WA contained 64 and 69 2-(2-phenylethyl)chromones, respectively, while there were none in the WW. Furthermore, 20 (relative content 36.19%) and 27 (relative content 54.92%) sesquiterpenes were identified in the essential oils of the IA and WA, respectively, and none were identified in the WW. The fungal inducer that was prepared from the WA effectively improves the quality of the agarwood, which is extremely similar to that of the WA.
Collapse
Affiliation(s)
- Manqin Huang
- College of Forestry, Guangxi University, Nanning 530004, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Sheng Ma
- College of Forestry, Guangxi University, Nanning 530004, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Mengji Qiao
- College of Forestry, Guangxi University, Nanning 530004, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Yunlin Fu
- College of Forestry, Guangxi University, Nanning 530004, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Yingjian Li
- College of Forestry, Guangxi University, Nanning 530004, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Nogawa T, Kato N, Shimizu T, Okano A, Futamura Y, Takahashi S, Koshino H, Osada H. Wakodecaline C, new tetrahydrofuran-fused decalin metabolite isolated from fungus Pyrenochaetopsis sp. RK10-F058. J Antibiot (Tokyo) 2023; 76:346-350. [PMID: 37020042 DOI: 10.1038/s41429-023-00613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/22/2023] [Accepted: 03/08/2023] [Indexed: 04/07/2023]
Abstract
A new decalin-containing secondary metabolite, wakodecaline C, was isolated from a fungus Pyrenochaetopsis sp. RK10-F058 by screening structurally interesting metabolites based on LC/MS profiling. The structure including the absolute configuration was determined by a combination of spectroscopic methods including NMR and mass spectrometry, chemical reaction, and calculation of ECD spectra. Wakodecaline C has unique structural features containing a tetrahydrofuran-fused decalin skeleton and tetramic acid moiety, which are connected through a double bond. The compound showed moderate cytotoxicity against HL-60 cells and antimalarial activity against the Plasmodium falciparum 3D7 strain.
Collapse
Affiliation(s)
- Toshihiko Nogawa
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Chemica Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naoki Kato
- Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Takeshi Shimizu
- Chemica Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Akiko Okano
- Chemica Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yushi Futamura
- Chemica Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hiroyuki Koshino
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hiroyuki Osada
- Chemica Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
5
|
Jiang M, Wu Z, Liu L, Chen S. The chemistry and biology of fungal meroterpenoids (2009-2019). Org Biomol Chem 2021; 19:1644-1704. [PMID: 33320161 DOI: 10.1039/d0ob02162h] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fungal meroterpenoids are secondary metabolites from mixed terpene-biosynthetic origins. Their intriguing chemical structural diversification and complexity, potential bioactivities, and pharmacological significance make them attractive targets in natural product chemistry, organic synthesis, and biosynthesis. This review provides a systematic overview of the isolation, chemical structural features, biological activities, and fungal biodiversity of 1585 novel meroterpenoids from 79 genera terrestrial and marine-derived fungi including macrofungi, Basidiomycetes, in 441 research papers in 2009-2019. Based on the nonterpenoid starting moiety in their biosynthesis pathway, meroterpenoids were classified into four categories (polyketide-terpenoid, indole-, shikimate-, and miscellaneous-) with polyketide-terpenoids (mainly tetraketide-) and shikimate-terpenoids as the primary source. Basidiomycota produced 37.5% of meroterpenoids, mostly shikimate-terpenoids. The genera of Ganoderma, Penicillium, Aspergillus, and Stachybotrys are the four dominant producers. Moreover, about 56% of meroterpenoids display various pronounced bioactivities, including cytotoxicity, enzyme inhibition, antibacterial, anti-inflammatory, antiviral, antifungal activities. It's exciting that several meroterpenoids including antroquinonol and 4-acetyl antroquinonol B were developed into phase II clinically used drugs. We assume that the chemical diversity and therapeutic potential of these fungal meroterpenoids will provide biologists and medicinal chemists with a large promising sustainable treasure-trove for drug discovery.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| |
Collapse
|
6
|
Qader MM, Hamed AA, Soldatou S, Abdelraof M, Elawady ME, Hassane ASI, Belbahri L, Ebel R, Rateb ME. Antimicrobial and Antibiofilm Activities of the Fungal Metabolites Isolated from the Marine Endophytes Epicoccum nigrum M13 and Alternaria alternata 13A. Mar Drugs 2021; 19:md19040232. [PMID: 33924262 PMCID: PMC8074750 DOI: 10.3390/md19040232] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 01/15/2023] Open
Abstract
Epicotripeptin (1), a new cyclic tripeptide along with four known cyclic dipeptides (2-5) and one acetamide derivative (6) were isolated from seagrass-associated endophytic fungus Epicoccum nigrum M13 recovered from the Red Sea. Additionally, two new compounds, cyclodidepsipeptide phragamide A (7) and trioxobutanamide derivative phragamide B (8), together with eight known compounds (9-16), were isolated from plant-derived endophyte Alternaria alternata 13A collected from a saline lake of Wadi El Natrun depression in the Sahara Desert. The structures of the isolated compounds were determined based on the 1D and 2D NMR spectroscopic data, HRESIMS data, and a comparison with the reported literature. The absolute configurations of 1 and 7 were established by advanced Marfey's and Mosher's ester analyses. The antimicrobial screening indicated that seven of the tested compounds exhibited considerable (MIC range of 2.5-5 µg/mL) to moderate (10-20 µg/mL) antibacterial effect against the tested Gram-positive strains and moderate to weak (10-30 µg/mL) antibacterial effect against Gram-negative strains. Most of the compounds exhibited weak or no activity against the tested Gram-negative strains. On the other hand, four of the tested compounds showed considerable antibiofilm effects against biofilm forming Gram-positive and Gram-negative strains.
Collapse
Affiliation(s)
- M. Mallique Qader
- School of Computing, Engineering, & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; (M.M.Q.); (A.S.I.H.)
- National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka
| | - Ahmed A. Hamed
- National Research Centre, Microbial Chemistry Department, 33 El-Buhouth Street, Dokki, Giza 12622, Egypt; (A.A.H.); (M.A.)
| | - Sylvia Soldatou
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK;
| | - Mohamed Abdelraof
- National Research Centre, Microbial Chemistry Department, 33 El-Buhouth Street, Dokki, Giza 12622, Egypt; (A.A.H.); (M.A.)
| | - Mohamed E. Elawady
- National Research Centre, Microbial Biotechnology Department, 33 El-Buhouth Street, Dokki, Giza 12622, Egypt;
| | - Ahmed S. I. Hassane
- School of Computing, Engineering, & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; (M.M.Q.); (A.S.I.H.)
- Aberdeen Royal Infirmary, Foresterhill Health Campus, Aberdeen AB25 2ZN, UK
| | - Lassaad Belbahri
- Laboratory of Soil Biology, University of Neuchatel, 2000 Neuchatel, Switzerland;
| | - Rainer Ebel
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK;
- Correspondence: (R.E.); (M.E.R.); Tel.: +44-1224-272930 (R.E.); +44-141-8483072 (M.E.R.)
| | - Mostafa E. Rateb
- School of Computing, Engineering, & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; (M.M.Q.); (A.S.I.H.)
- Correspondence: (R.E.); (M.E.R.); Tel.: +44-1224-272930 (R.E.); +44-141-8483072 (M.E.R.)
| |
Collapse
|