1
|
Zhang M, Song H, Yang S, Zhang Y, Tian Y, Wang Y, Liu D. Deciphering the Antibacterial Mechanisms of 5-Fluorouracil in Escherichia coli through Biochemical and Transcriptomic Analyses. Antibiotics (Basel) 2024; 13:528. [PMID: 38927194 PMCID: PMC11200800 DOI: 10.3390/antibiotics13060528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The emergence of carbapenem-resistant Gram-negative pathogens presents a clinical challenge in infection treatment, prompting the repurposing of existing drugs as an essential strategy to address this crisis. Although the anticancer drug 5-fluorouracil (5-FU) has been recognized for its antibacterial properties, its mechanisms are not fully understood. Here, we found that the minimal inhibitory concentration (MIC) of 5-FU against Escherichia coli was 32-64 µg/mL, including strains carrying blaNDM-5, which confers resistance to carbapenems. We further elucidated the antibacterial mechanism of 5-FU against E. coli by using genetic and biochemical analyses. We revealed that the mutation of uracil phosphoribosyltransferase-encoding gene upp increased the MIC of 5-FU against E. coli by 32-fold, indicating the role of the upp gene in 5-FU resistance. Additionally, transcriptomic analysis of E. coli treated with 5-FU at 8 µg/mL and 32 µg/mL identified 602 and 1082 differentially expressed genes involved in carbon and nucleic acid metabolism, DNA replication, and repair pathways. The biochemical assays showed that 5-FU induced bacterial DNA damage, significantly increased intracellular ATP levels and the NAD+/NADH ratio, and promoted reactive oxygen species (ROS) production. These findings suggested that 5-FU may exert antibacterial effects on E. coli through multiple pathways, laying the groundwork for its further development as a therapeutic candidate against carbapenem-resistant bacterial infections.
Collapse
Affiliation(s)
- Muchen Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (S.Y.); (Y.Z.); (Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Huangwei Song
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;
| | - Siyuan Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (S.Y.); (Y.Z.); (Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yan Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (S.Y.); (Y.Z.); (Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yunrui Tian
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (S.Y.); (Y.Z.); (Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (S.Y.); (Y.Z.); (Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Dejun Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (S.Y.); (Y.Z.); (Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
2
|
Wang P, Cheng T, Pan J. Nucleoside Analogs: A Review of Its Source and Separation Processes. Molecules 2023; 28:7043. [PMID: 37894522 PMCID: PMC10608831 DOI: 10.3390/molecules28207043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Nucleoside analogs play a crucial role in the production of high-value antitumor and antimicrobial drugs. Currently, nucleoside analogs are mainly obtained through nucleic acid degradation, chemical synthesis, and biotransformation. However, these methods face several challenges, such as low concentration of the main product, the presence of complex matrices, and the generation of numerous by-products that significantly limit the development of new drugs and their pharmacological studies. Therefore, this work aims to summarize the universal separation methods of nucleoside analogs, including crystallization, high-performance liquid chromatography (HPLC), column chromatography, solvent extraction, and adsorption. The review also explores the application of molecular imprinting techniques (MITs) in enhancing the identification of the separation process. It compares existing studies reported on adsorbents of molecularly imprinted polymers (MIPs) for the separation of nucleoside analogs. The development of new methods for selective separation and purification of nucleosides is vital to improving the efficiency and quality of nucleoside production. It enables us to obtain nucleoside products that are essential for the development of antitumor and antiviral drugs. Additionally, these methods possess immense potential in the prevention and control of serious diseases, offering significant economic, social, and scientific benefits to the fields of environment, biomedical research, and clinical therapeutics.
Collapse
Affiliation(s)
| | | | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (P.W.); (T.C.)
| |
Collapse
|
3
|
Wang R, Cui L, Li J, Li W. Factors driving the halophyte rhizosphere bacterial communities in coastal salt marshes. Front Microbiol 2023; 14:1127958. [PMID: 36910212 PMCID: PMC9992437 DOI: 10.3389/fmicb.2023.1127958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Root-associated microorganisms promote plant growth and provide protection from stresses. Halophytes are the fundamental components maintaining ecosystem functions of coastal salt marshes; however, it is not clear how their microbiome are structured across large spatial scales. Here, we investigated the rhizosphere bacterial communities of typical coastal halophyte species (Phragmites australis and Suaeda salsa) in temperate and subtropical salt marshes across 1,100 km in eastern China. Methods The sampling sites were located from 30.33 to 40.90°N and 119.24 to 121.79°E across east China. A total of 36 plots were investigated in the Liaohe River Estuary, the Yellow River Estuary, Yancheng, and Hangzhou Bay in August 2020. We collected shoot, root, and rhizosphere soil samples. the number of pakchoi leaves, total fresh and dry weight of the seedlings was counted. The soil properties, plant functional traits, the genome sequencing, and metabolomics assay were detected. Results The results showed that soil nutrients (total organic carbon, dissolved organic carbon, total nitrogen, soluble sugars, and organic acids) are high in the temperate marsh, while root exudates (measured by metabolite expressions) are significantly higher in the subtropical marsh. We observed higher bacterial alpha diversity, more complex network structure, and more negative connections in the temperate salt marsh, which suggested intense competition among bacterial groups. Variation partitioning analysis showed that climatic, edaphic, and root exudates had the greatest effects on the bacteria in the salt marsh, especially for abundant and moderate subcommunities. Random forest modeling further confirmed this but showed that plant species had a limited effect. Conclutions Taken together, the results of this study revealed soil properties (chemical properties) and root exudates (metabolites) had the greatest influence on the bacterial community of salt marsh, especially for abundant and moderate taxa. Our results provided novel insights into the biogeography of halophyte microbiome in coastal wetlands and can be beneficial for policymakers in decision-making on the management of coastal wetlands.
Collapse
Affiliation(s)
- Rumiao Wang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing, China
| | - Lijuan Cui
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing, China
| | - Jing Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing, China
| | - Wei Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing, China
| |
Collapse
|
4
|
Ahmed LA, Al-Massri KF. Gut Microbiota Modulation for Therapeutic Management of Various Diseases: A New Perspective Using Stem Cell Therapy. Curr Mol Pharmacol 2023; 16:43-59. [PMID: 35196976 DOI: 10.2174/1874467215666220222105004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/08/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
Dysbiosis has been linked to various diseases ranging from cardiovascular, neurologic, gastrointestinal, respiratory, and metabolic illnesses to cancer. Restoring of gut microbiota balance represents an outstanding clinical target for the management of various multidrug-resistant diseases. Preservation of gut microbial diversity and composition could also improve stem cell therapy which now has diverse clinical applications in the field of regenerative medicine. Gut microbiota modulation and stem cell therapy may be considered a highly promising field that could add up towards the improvement of different diseases, increasing the outcome and efficacy of each other through mutual interplay or interaction between both therapies. Importantly, more investigations are required to reveal the cross-talk between microbiota modulation and stem cell therapy to pave the way for the development of new therapies with enhanced therapeutic outcomes. This review provides an overview of dysbiosis in various diseases and their management. It also discusses microbiota modulation via antibiotics, probiotics, prebiotics, and fecal microbiota transplant to introduce the concept of dysbiosis correction for the management of various diseases. Furthermore, we demonstrate the beneficial interactions between microbiota modulation and stem cell therapy as a way for the development of new therapies in addition to limitations and future challenges regarding the applications of these therapies.
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Khaled F Al-Massri
- Department of Pharmacy and Biotechnology, Faculty of Medicine and Health Sciences, University of Palestine, Gaza, Palestine
| |
Collapse
|
5
|
Shao X, Zheng C, Xu P, Shiraishi T, Kuzuyama T, Molinaro A, Silipo A, Yu B. Total Synthesis and Stereochemistry Assignment of Nucleoside Antibiotic A‐94964. Angew Chem Int Ed Engl 2022; 61:e202200818. [DOI: 10.1002/anie.202200818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaofei Shao
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| | - Chang Zheng
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| | - Taro Shiraishi
- Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Tokyo Japan
| | - Antonio Molinaro
- Department of Chemical Sciences University of Naples Federico II Napoli Italy
| | - Alba Silipo
- Department of Chemical Sciences University of Naples Federico II Napoli Italy
| | - Biao Yu
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| |
Collapse
|
6
|
Skrzypczak N, Przybylski P. Structural diversity and biological relevance of benzenoid and atypical ansamycins and their congeners. Nat Prod Rep 2022; 39:1678-1704. [PMID: 35262153 DOI: 10.1039/d2np00004k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 2011 to 2021The structural division of ansamycins, including those of atypical cores and different lengths of the ansa chains, is presented. Recently discovered benzenoid and atypical ansamycin scaffolds are presented in relation to their natural source and biosynthetic routes realized in bacteria as well as their muta and semisynthetic modifications influencing biological properties. To better understand the structure-activity relationships among benzenoid ansamycins structural aspects together with mechanisms of action regarding different targets in cells, are discussed. The most promising directions for structural optimizations of benzenoid ansamycins, characterized by predominant anticancer properties, were discussed in view of their potential medical and pharmaceutical applications. The bibliography of the review covers mainly years from 2011 to 2021.
Collapse
Affiliation(s)
- Natalia Skrzypczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| |
Collapse
|
7
|
Shao X, Zheng C, Xu P, Shiraishi T, Kuzuyama T, Molinaro A, Silipo A, Yu B. Total Synthesis and Stereochemistry Assignment of Nucleoside Antibiotic A‐94964. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaofei Shao
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| | - Chang Zheng
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| | - Taro Shiraishi
- Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Tokyo Japan
| | - Antonio Molinaro
- Department of Chemical Sciences University of Naples Federico II Napoli Italy
| | - Alba Silipo
- Department of Chemical Sciences University of Naples Federico II Napoli Italy
| | - Biao Yu
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| |
Collapse
|
8
|
Berlinck RGS, Crnkovic CM, Gubiani JR, Bernardi DI, Ióca LP, Quintana-Bulla JI. The isolation of water-soluble natural products - challenges, strategies and perspectives. Nat Prod Rep 2021; 39:596-669. [PMID: 34647117 DOI: 10.1039/d1np00037c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Covering period: up to 2019Water-soluble natural products constitute a relevant group of secondary metabolites notably known for presenting potent biological activities. Examples are aminoglycosides, β-lactam antibiotics, saponins of both terrestrial and marine origin, and marine toxins. Although extensively investigated in the past, particularly during the golden age of antibiotics, hydrophilic fractions have been less scrutinized during the last few decades. This review addresses the possible reasons on why water-soluble metabolites are now under investigated and describes approaches and strategies for the isolation of these natural compounds. It presents examples of several classes of hydrosoluble natural products and how they have been isolated. Novel stationary phases and chromatography techniques are also reviewed, providing a perspective towards a renaissance in the investigation of water-soluble natural products.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Camila M Crnkovic
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Darlon I Bernardi
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Laura P Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Jairo I Quintana-Bulla
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
9
|
Molecular mechanism of mureidomycin biosynthesis activated by introduction of an exogenous regulatory gene ssaA into Streptomyces roseosporus. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1949-1963. [PMID: 33580428 PMCID: PMC7880210 DOI: 10.1007/s11427-020-1892-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/26/2021] [Indexed: 12/04/2022]
Abstract
Mureidomycins (MRDs), a group of unique uridyl-peptide antibiotics, exhibit antibacterial activity against the highly refractory pathogen Pseudomonas aeruginosa. Our previous study showed that the cryptic MRD biosynthetic gene cluster (BGC) mrd in Streptomyces roseosporus NRRL 15998 could not be activated by its endogenous regulator 02995 but activated by an exogenous activator SsaA from sansanmycin’s BGC ssa of Streptomyces sp. strain SS. Here we report the molecular mechanism for this inexplicable regulation. EMSAs and footprinting experiments revealed that SsaA could directly bind to a 14-nt palindrome sequence of 5′-CTGRCNNNNGTCAG-3′ within six promoter regions of mrd. Disruption of three representative target genes (SSGG-02981, SSGG-02987 and SSGG-02994) showed that the target genes directly controlled by SsaA were essential for MRD production. The regulatory function was further investigated by replacing six regions of SSGG-02995 with those of ssaA. Surprisingly, only the replacement of 343–450 nt fragment encoding the 115–150 amino acids (AA) of SsaA could activate MRD biosynthesis. Further bioinformatics analysis showed that the 115–150 AA situated between two conserved domains of SsaA. Our findings significantly demonstrate that constitutive expression of a homologous exogenous regulatory gene is an effective strategy to awaken cryptic biosynthetic pathways in Streptomyces.
Collapse
|
10
|
Gong R, Yu L, Qin Y, Price NPJ, He X, Deng Z, Chen W. Harnessing synthetic biology-based strategies for engineered biosynthesis of nucleoside natural products in actinobacteria. Biotechnol Adv 2020; 46:107673. [PMID: 33276073 DOI: 10.1016/j.biotechadv.2020.107673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/29/2020] [Accepted: 11/25/2020] [Indexed: 01/01/2023]
Abstract
Antibiotic resistance poses an increasing threat to global health, and it is urgent to reverse the present trend by accelerating development of new natural product derived drugs. Nucleoside antibiotics, a valuable family of promising natural products with remarkable structural features and diverse biological activities, have played significant roles in healthcare and for plant protection. Understanding the biosynthesis of these intricate molecules has provided a foundation for bioengineering the microbial cell factory towards yield enhancement and structural diversification. In this review, we summarize the recent progresses in employing synthetic biology-based strategies to improve the production of target nucleoside antibiotics. Moreover, we delineate the advances on rationally accessing the chemical diversities of natural nucleoside antibiotics.
Collapse
Affiliation(s)
- Rong Gong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Le Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yini Qin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Neil P J Price
- US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wenqing Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
11
|
Ribeiro CFA, Silveira GGDOS, Cândido EDS, Cardoso MH, Espínola Carvalho CM, Franco OL. Effects of Antibiotic Treatment on Gut Microbiota and How to Overcome Its Negative Impacts on Human Health. ACS Infect Dis 2020; 6:2544-2559. [PMID: 32786282 DOI: 10.1021/acsinfecdis.0c00036] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The need for new antimicrobial therapies is evident, especially to reduce antimicrobial resistance and minimize deleterious effects on gut microbiota. However, although diverse studies discuss the adverse effects of broad-spectrum antibiotics on the microbiome ecology, targeted interventions that could solve this problem have often been overlooked. The impact of antibiotics on gut microbiota homeostasis is alarming, compromising its microbial community and leading to changes in host health. Recent studies have shown that these impacts can be transient or permanent, causing irreversible damage to gut microbiota. The responses to and changes in the gut microbial community arising from antibiotic treatment are related to its duration, the number of doses, antibiotic class, host age, genetic susceptibility, and lifestyle. In contrast, each individual's native microbiota can also affect the response to treatment as well as respond differently to antibiotic treatment. In this context, the current challenge is to promote the growth of potentially beneficial microorganisms and to reduce the proportion of microorganisms that cause dysbiosis, thus contributing to an improvement in the patient's health. An essential requirement for the development of novel antibiotics will be personalized medicinal strategies that recognize a patient's intestinal and biochemical individuality. Thus, this Review will address a new perspective on antimicrobial therapies through pathogen-selective antibiotics that minimize the impacts on human health due to changes in the gut microbiota from the use of antibiotics.
Collapse
Affiliation(s)
- Camila Fontoura Acosta Ribeiro
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
| | | | - Elizabete de Souza Cândido
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Federal District 71966-700, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Federal District 71966-700, Brazil
| | - Cristiano Marcelo Espínola Carvalho
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Federal District 71966-700, Brazil
| |
Collapse
|
12
|
Wang L, Wang M, Fu Y, Huang P, Kong D, Niu G. Engineered biosynthesis of thaxtomin phytotoxins. Crit Rev Biotechnol 2020; 40:1163-1171. [PMID: 32819175 DOI: 10.1080/07388551.2020.1807461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Herbicide-resistant weeds are a growing problem worldwide. Thaxtomin phytotoxins are a group of nitrated diketopiperazines produced by the potato common scab-causing pathogen Streptomyces scabies and other actinobacterial plant pathogens. They represent a unique class of microbial natural products with distinctive structural features and promising herbicidal activity. The biosynthesis of thaxtomins proceeds through multiple steps of unusual enzymatic reactions. Advances in understanding of thaxtomins biosynthetic machinery have provided the basis for precursor-directed biosynthesis, pathway refactoring, and one-pot biocombinatorial synthesis to generate thaxtomin analogues. We herein summarize recent findings on the biosynthesis of thaxtomins and highlight recent advances in the rational generation of novel thaxtomins for the development of potent herbicidal agents.
Collapse
Affiliation(s)
- Linqi Wang
- Biotechnology Research Center, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Meiyan Wang
- Biotechnology Research Center, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yudie Fu
- Biotechnology Research Center, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Pengju Huang
- Biotechnology Research Center, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Dekun Kong
- Biotechnology Research Center, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guoqing Niu
- Biotechnology Research Center, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, China
| |
Collapse
|