1
|
Guyon L, Guez J, Toupance B, Heyer E, Chaix R. Patrilineal segmentary systems provide a peaceful explanation for the post-Neolithic Y-chromosome bottleneck. Nat Commun 2024; 15:3243. [PMID: 38658560 PMCID: PMC11043392 DOI: 10.1038/s41467-024-47618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Studies have found a pronounced decline in male effective population sizes worldwide around 3000-5000 years ago. This bottleneck was not observed for female effective population sizes, which continued to increase over time. Until now, this remarkable genetic pattern was interpreted as the result of an ancient structuring of human populations into patrilineal groups (gathering closely related males) violently competing with each other. In this scenario, violence is responsible for the repeated extinctions of patrilineal groups, leading to a significant reduction in male effective population size. Here, we propose an alternative hypothesis by modelling a segmentary patrilineal system based on anthropological literature. We show that variance in reproductive success between patrilineal groups, combined with lineal fission (i.e., the splitting of a group into two new groups of patrilineally related individuals), can lead to a substantial reduction in the male effective population size without resorting to the violence hypothesis. Thus, a peaceful explanation involving ancient changes in social structures, linked to global changes in subsistence systems, may be sufficient to explain the reported decline in Y-chromosome diversity.
Collapse
Affiliation(s)
- Léa Guyon
- Eco-Anthropologie (UMR 7206), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, Paris, 75116, France.
| | - Jérémy Guez
- Eco-Anthropologie (UMR 7206), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, Paris, 75116, France
- Université Paris-Saclay, CNRS, INRIA, Laboratoire Interdisciplinaire des Sciences du Numérique, Orsay, 91400, France
| | - Bruno Toupance
- Eco-Anthropologie (UMR 7206), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, Paris, 75116, France
- Université Paris Cité, Eco-anthropologie, Paris, F-75006, France
| | - Evelyne Heyer
- Eco-Anthropologie (UMR 7206), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, Paris, 75116, France
| | - Raphaëlle Chaix
- Eco-Anthropologie (UMR 7206), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, Paris, 75116, France.
| |
Collapse
|
2
|
Brucato N, Fernandes V, Kusuma P, Černý V, Mulligan CJ, Soares P, Rito T, Besse C, Boland A, Deleuze JF, Cox MP, Sudoyo H, Stoneking M, Pereira L, Ricaut FX. Evidence of Austronesian Genetic Lineages in East Africa and South Arabia: Complex Dispersal from Madagascar and Southeast Asia. Genome Biol Evol 2019; 11:748-758. [PMID: 30715341 PMCID: PMC6423374 DOI: 10.1093/gbe/evz028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2019] [Indexed: 12/31/2022] Open
Abstract
The Austronesian dispersal across the Indonesian Ocean to Madagascar and the Comoros has been well documented, but in an unexplained anomaly, few to no traces have been found of the Austronesian expansion in East Africa or the Arabian Peninsula. To revisit this peculiarity, we surveyed the Western Indian Ocean rim populations to identify potential Austronesian genetic ancestry. We generated full mitochondrial DNA genomes and genome-wide genotyping data for these individuals and compared them with the Banjar, the Indonesian source population of the westward Austronesian dispersal. We find strong support for Asian genetic contributions to maternal lineages and autosomal variation in modern day Somalia and Yemen. Surprisingly, this input reveals two apparently different geographic origins and timings of admixture for the Austronesian contact; one at a very early phase (likely associated with the early Austronesian dispersals), and a later movement dating to the end of nineteenth century. These Austronesian gene flows come, respectively, from Madagascar and directly from an unidentified location in Island Southeast Asia. This result reveals a far more complex dynamic of Austronesian dispersals through the Western Indian Ocean than has previously been understood and suggests that Austronesian movements within the Indian Ocean may have been part of a lengthy process, probably continuing well into the modern era.
Collapse
Affiliation(s)
- Nicolas Brucato
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, Toulouse, France
| | - Veronica Fernandes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Porto, Portugal
| | - Pradiptajati Kusuma
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Viktor Černý
- Department of Anthropology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | - Pedro Soares
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Porto, Portugal.,Centro de Biologia Molecular e Ambiental (CBMA), Departamento de Biologia, Universidade do Minho, Braga, Portugal
| | - Teresa Rito
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Porto, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Medicine & ICVS/3B, PT Government Associate Laboratory, University of Minho, Braga, Portugal
| | - Céline Besse
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-Francois Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Murray P Cox
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Herawati Sudoyo
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia.,Department of Medical Biology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Luisa Pereira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Porto, Portugal
| | - François-Xavier Ricaut
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, Toulouse, France
| |
Collapse
|
3
|
Ethnogenetic analysis reveals that Kohistanis of Pakistan were genetically linked to west Eurasians by a probable ancestral genepool from Eurasian steppe in the bronze age. Mitochondrion 2019; 47:82-93. [PMID: 31103559 DOI: 10.1016/j.mito.2019.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/06/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022]
Abstract
Despite the unique geographic, ethnic, social and cultural features of Kohistan in Pakistan, the origin and descent of Kohistanis remain still obscure. In an effort to address questions concerning the genetic structure, origin and genetic affinities of Kohistanis, we herein applied an ethnogenetic approach consisting on mitochondrial DNA (mtDNA) analysis and dental morphology analysis. We sequenced HVS1 of mtDNA, observed 14 haplotypes and assigned a total of 9 haplogroups belonging to macrolineages M (17%) and N (83%). Genetic diversity estimates in Kohistanis (Hd = 0.910 ± 0.014; Pi = 0.019 ± 0.001; θw = 0.019 ± 0.006) were similar to that of previous studies in other Pakistani populations. Overall, the analyses of dental morphology and mtDNA profile of Kohistanis resulted in similar findings. All the analyses indicate that Kohistanis share affinities to populations from Europe, Near East, Central Asia and South Asia. The Kohistani HVS1 haplotype 2 shares 100% identity to HVS1 haplotypes across the Europe. These results in light of recent insights into ancient genomics lead us to conclude that ancestry from Eurasian Steppe genetically linked Kohistanis to all these populations in the Bronze Age. This is consistent with linguistic evidence and also with the Indo-Aryan migration model for the peopling of South Asia.
Collapse
|