1
|
Ricci A, Carradori S, Cataldi A, Zara S. Eg5 and Diseases: From the Well-Known Role in Cancer to the Less-Known Activity in Noncancerous Pathological Conditions. Biochem Res Int 2024; 2024:3649912. [PMID: 38939361 PMCID: PMC11211015 DOI: 10.1155/2024/3649912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
Eg5 is a protein encoded by KIF11 gene and is primarily involved in correct mitotic cell division. It is also involved in nonmitotic processes such as polypeptide synthesis, protein transport, and angiogenesis. The scientific literature sheds light on the ubiquitous functions of KIF11 and its involvement in the onset and progression of different pathologies. This review focuses attention on two main points: (1) the correlation between Eg5 and cancer and (2) the involvement of Eg5 in noncancerous conditions. Regarding the first point, several tumors revealed an overexpression of this kinesin, thus pushing to look for new Eg5 inhibitors for clinical practice. In addition, the evaluation of Eg5 expression represents a crucial step, as its overexpression could predict a poor prognosis for cancer patients. Referring to the second point, in specific pathological conditions, the reduced activity of Eg5 can be one of the causes of pathological onset. This is the case of Alzheimer's disease (AD), in which Aβ and Tau work as Eg5 inhibitors, or in acquired immune deficiency syndrome (AIDS), in which Tat-mediated Eg5 determines the loss of CD4+ T-lymphocytes. Reduced Eg5 activity, due to mutations of KIF11 gene, is also responsible for pathological conditions such as microcephaly with or without chorioretinopathy, lymphedema, or intellectual disability (MCLRI) and familial exudative vitreous retinopathy (FEVR). In conclusion, this review highlights the double impact that overexpression or loss of function of Eg5 could have in the onset and progression of different pathological situations. This emphasizes, on one hand, a possible role of Eg5 as a potential biomarker and new target in cancer and, on the other hand, the promotion of Eg5 expression/activity as a new therapeutic strategy in different noncancerous diseases.
Collapse
Affiliation(s)
- Alessia Ricci
- Department of Pharmacy, University “G. d'Annunzio” Chieti-Pescara, Chieti, 66100, Italy
| | - Simone Carradori
- Department of Pharmacy, University “G. d'Annunzio” Chieti-Pescara, Chieti, 66100, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University “G. d'Annunzio” Chieti-Pescara, Chieti, 66100, Italy
| | - Susi Zara
- Department of Pharmacy, University “G. d'Annunzio” Chieti-Pescara, Chieti, 66100, Italy
| |
Collapse
|
2
|
Yu WX, Li YK, Xu MF, Xu CJ, Chen J, Wei YL, She ZY. Kinesin-5 Eg5 is essential for spindle assembly, chromosome stability and organogenesis in development. Cell Death Dis 2022; 8:490. [PMID: 36513626 DOI: 10.1038/s41420-022-01281-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Chromosome stability relies on bipolar spindle assembly and faithful chromosome segregation during cell division. Kinesin-5 Eg5 is a plus-end-directed kinesin motor protein, which is essential for spindle pole separation and chromosome alignment in mitosis. Heterozygous Eg5 mutations cause autosomal-dominant microcephaly, primary lymphedema, and chorioretinal dysplasia syndrome in humans. However, the developmental roles and cellular mechanisms of Eg5 in organogenesis remain largely unknown. In this study, we have shown that Eg5 inhibition leads to the formation of the monopolar spindle, chromosome misalignment, polyploidy, and subsequent apoptosis. Strikingly, long-term inhibition of Eg5 stimulates the immune responses and the accumulation of lymphocytes in the mouse spleen through the innate and specific immunity pathways. Eg5 inhibition results in metaphase arrest and cell growth inhibition, and suppresses the formation of somite and retinal development in zebrafish embryos. Our data have revealed the essential roles of kinesin-5 Eg5 involved in cell proliferation, chromosome stability, and organogenesis during development. Our findings shed a light on the cellular basis and pathogenesis in microcephaly, primary lymphedema, and chorioretinal dysplasia syndrome of Eg5-mutation-positive patients.
Collapse
Affiliation(s)
- Wen-Xin Yu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, 350122, Fuzhou, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, 350122, Fuzhou, Fujian, China
| | - Yu-Kun Li
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, 350122, Fuzhou, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, 350122, Fuzhou, Fujian, China
| | - Meng-Fei Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, 350122, Fuzhou, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, 350122, Fuzhou, Fujian, China
| | - Chen-Jie Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, 350122, Fuzhou, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, 350122, Fuzhou, Fujian, China
| | - Jie Chen
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, 350122, Fuzhou, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, 350122, Fuzhou, Fujian, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, 350001, Fuzhou, Fujian, China.,College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 350122, Fuzhou, Fujian, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, 350122, Fuzhou, Fujian, China. .,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, 350122, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
Wang Y, Smallwood PM, Williams J, Nathans J. A mouse model for kinesin family member 11 (Kif11)-associated familial exudative vitreoretinopathy. Hum Mol Genet 2021; 29:1121-1131. [PMID: 31993640 DOI: 10.1093/hmg/ddaa018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/07/2019] [Accepted: 01/22/2020] [Indexed: 12/30/2022] Open
Abstract
During mitosis, Kif11, a kinesin motor protein, promotes bipolar spindle formation and chromosome movement, and during interphase, Kif11 mediates diverse trafficking processes in the cytoplasm. In humans, inactivating mutations in KIF11 are associated with (1) retinal hypovascularization with or without microcephaly and (2) multi-organ syndromes characterized by variable combinations of lymphedema, chorioretinal dysplasia, microcephaly and/or mental retardation. To explore the pathogenic basis of KIF11-associated retinal vascular disease, we generated a Kif11 conditional knockout (CKO) mouse and investigated the consequences of early postnatal inactivation of Kif11 in vascular endothelial cells (ECs). The principal finding is that postnatal EC-specific loss of Kif11 leads to severely stunted growth of the retinal vasculature, mildly stunted growth of the cerebellar vasculature and little or no effect on the vasculature elsewhere in the central nervous system (CNS). Thus, in mice, Kif11 function in early postnatal CNS ECs is most significant in the two CNS regions-the retina and cerebellum-that exhibit the most rapid rate of postnatal growth, which may sensitize ECs to impaired mitotic spindle function. Several lines of evidence indicate that these phenotypes are not caused by reduced beta-catenin signaling in ECs, despite the close resemblance of the Kif11 CKO phenotype to that caused by EC-specific reductions in beta-catenin signaling. Based on prior work, defective beta-catenin signaling had been the only known mechanism responsible for monogenic human disorders of retinal hypovascularization. The present study implies that retinal hypovascularization can arise from a second and mechanistically distinct cause.
Collapse
Affiliation(s)
- Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Philip M Smallwood
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Shurygina MF, Simonett JM, Parker MA, Mitchell A, Grigorian F, Lifton J, Nagiel A, Shpak AA, Dadali EL, Mishina IA, Weleber RG, Yang P, Pennesi ME. Genotype Phenotype Correlation and Variability in Microcephaly Associated With Chorioretinopathy or Familial Exudative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2021; 61:2. [PMID: 33137195 PMCID: PMC7645200 DOI: 10.1167/iovs.61.13.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Purpose The purpose of this study was to analyze the natural history and phenotypic overlap of patients with microcephaly and a chorioretinopathy or familial exudative vitreoretinopathy (FEVR) ocular phenotype caused by mutations in KIF11, TUBGCP4, or TUBGCP6. Methods Patients diagnosed with congenital microcephaly and chorioretinopathy or FEVR were included. Molecular investigations consisted of targeted genetic sequencing. Data from medical records, ophthalmologic examination and imaging, electroretinography, and visual fields were analyzed for systemic and ophthalmic features and evidence of posterior segment disease progression. Results Twelve patients from 9 families were included and had a median of 8 years of follow-up. Nine patients had KIF11 variants, two had heterozygous TUBGCP6 variants, and one had heterozygous variants in TUBGCP4. All patients had reduced visual function and multiple individuals and families showed features of both chorioretinopathy and FEVR. Progression of posterior segment disease was highly variable, with some degree of increased atrophy of the macula or peripheral retina or increased vitreoretinal traction observed in 9 of 12 patients. Conclusions Microcephaly due to mutations in KIF11, TUBGCP4, or TUBGCP6 can be associated with retinal disease on a spectrum from chorioretinal atrophy to FEVR-like posterior segment changes. Visually significant disease progression can occur and patients should be monitored closely by a team experienced in ophthalmic genetics.
Collapse
Affiliation(s)
- Maria F Shurygina
- S. Fyodorov Eye Microsurgery Federal State Institution, Moscow, Russia
| | - Joseph M Simonett
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Maria A Parker
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Amanda Mitchell
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Florin Grigorian
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Jacob Lifton
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Aaron Nagiel
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States.,The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, California, United States.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States
| | - Alexander A Shpak
- S. Fyodorov Eye Microsurgery Federal State Institution, Moscow, Russia
| | - Elena L Dadali
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, California, United States
| | - Irina A Mishina
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, California, United States
| | - Richard G Weleber
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Paul Yang
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States
| |
Collapse
|
5
|
Liu L, Downs M, Guidry J, Wojcik EJ. Inter-organelle interactions between the ER and mitotic spindle facilitates Zika protease cleavage of human Kinesin-5 and results in mitotic defects. iScience 2021; 24:102385. [PMID: 33997675 PMCID: PMC8100630 DOI: 10.1016/j.isci.2021.102385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/21/2021] [Accepted: 03/30/2021] [Indexed: 12/03/2022] Open
Abstract
Here we identify human Kinesin-5, Kif11/HsEg5, as a cellular target of Zika protease. We show that Zika NS2B-NS3 protease targets several sites within the motor domain of HsEg5 irrespective of motor binding to microtubules. The native integral ER-membrane protease triggers mitotic spindle positioning defects and a prolonged metaphase delay in cultured cells. Our data support a model whereby loss of function of HsEg5 is mediated by Zika protease and is spatially restricted to the ER-mitotic spindle interface during mitosis. The resulting phenotype is distinct from the monopolar phenotype that typically results from uniform inhibition of HsEg5 by RNAi or drugs. In addition, our data reveal novel inter-organelle interactions between the mitotic apparatus and the surrounding reticulate ER network. Given that Kif11 is haplo-insufficient in humans, and reduced dosage results in microcephaly, we propose that Zika protease targeting of HsEg5 may be a key event in the etiology of Zika syndrome microcephaly. Zika protease cleavage of Kinesin-5 impairs mitotic progression Inter-organelle interactions spatially control Zika proteolysis of Kinesin-5 Native Zika protease affects mitosis differently than soluble Zika protease Zika protease may elicit fetal microcephaly and blindness via Kif11/Kinesin-5
Collapse
Affiliation(s)
- Liqiong Liu
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| | - Micquel Downs
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| | - Jesse Guidry
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
- The Proteomics Core Facility, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| | - Edward J Wojcik
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
6
|
Chen C, Sun L, Li S, Huang L, Zhang T, Wang Z, Yu B, Luo X, Ding X. Novel variants in familial exudative vitreoretinopathy patients with KIF11 mutations and the Genotype-Phenotype correlation. Exp Eye Res 2020; 199:108165. [PMID: 32730767 DOI: 10.1016/j.exer.2020.108165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/17/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022]
Abstract
Familial exudative vitreoretinopathy (FEVR) is an inherited disease characterized by abnormal development of retinal vasculature. KIF11 mutations were identified to be associated with FEVR in recent years. The purpose of this study was to investigate novel variants and describe associated ocular and extraocular phenotypes in FEVR patients with KIF11 mutations. Herein, 417 probands with clinical diagnosis of FEVR were enrolled. Genetic testing and ophthalmic examinations were performed in all subjects, and the genotype-phenotype correlation was analyzed. Overall, KIF11 mutation was identified in nine probands (9/417, 2.2%) among the patients with FEVR phenotype. There were six males and three females whose median age was six months (range: four months to six years old) at first visit. Among the detected mutations, five (55.6%) were frameshift, two (22.2%) were missense, one (11.1%) nonsense, and one (11.1%) splicing. Seven of these KIF11 mutations were detected as novel. Four (4/9, 44.4%) of the mutations were de novo. Clinical examinations showed that: four probands presented with bilateral falciform retinal fold; two with bilateral tractional retinal detachment; one was observed tractional retinal detachment in one eye and retinal fold in the other eye; one had falciform retinal fold in one eye and chorioretinal atrophy in the other eye; one exhibited rhegmatogenous retinal detachment in the left eye. Six of the probands were detected to have microcephaly. In conclusion: Most (5/9,55.6%) of the causative mutations were frameshift, and nearly half (4/9, 44.4%) of the mutations were de novo. Most (8/9, 88.9%) patients with KIF11 mutations showed typical ocular manifestations of severe FEVR. Majority (6/9, 66.7%) of the probands had a KIF11 mutation and were detected to have microcephaly. Seven of these harbored KIF11 mutations detected to be novel.
Collapse
Affiliation(s)
- Chonglin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Limei Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Songshan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Li Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Ting Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhirong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Bilin Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiaoling Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Hull S, Arno G, Ostergaard P, Pontikos N, Robson AG, Webster AR, Hogg CR, Wright GA, Henderson RHH, Martin CA, Jackson AP, Mansour S, Moore AT, Michaelides M. Clinical and Molecular Characterization of Familial Exudative Vitreoretinopathy Associated With Microcephaly. Am J Ophthalmol 2019; 207:87-98. [PMID: 31077665 DOI: 10.1016/j.ajo.2019.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Familial exudative vitreoretinopathy (FEVR) is a rare finding in patients with genetic forms of microcephaly. This study documents the detailed phenotype and expands the range of genetic heterogeneity. DESIGN Retrospective case series. METHODS Twelve patients (10 families) with a diagnosis of FEVR and microcephaly were ascertained from pediatric genetic eye clinics and underwent full clinical assessment including retinal imaging. Molecular investigations included candidate gene Sanger sequencing, whole-exome sequencing (WES), and whole-genome sequencing (WGS). RESULTS All patients had reduced vision and nystagmus. Six were legally blind. Two probands carried bi-allelic LRP5 variants, both presenting with bilateral retinal folds. A novel homozygous splice variant, and 2 missense variants were identified. Subsequent bone density measurement identified osteoporosis in one proband. Four families had heterozygous KIF11 variants. Two probands had a retinal fold in one eye and chorioretinal atrophy in the other; the other 2 had bilateral retinal folds. Four heterozygous variants were found, including 2 large deletions not identified on Sanger sequencing or WES. Finally, a family of 2 children with learning difficulties, abnormal peripheral retinal vasculogenesis, and rod-cone dystrophy were investigated. They were found to have bi-allelic splicing variants in TUBGCP6. Three families remain unsolved following WES and WGS. CONCLUSIONS Molecular diagnosis has been achieved in 7 of 10 families investigated, including a previously unrecognized association with LRP5. WGS enabled molecular diagnosis in 3 families after prior negative Sanger sequencing of the causative gene. This has enabled patient-specific care with targeted investigations and accurate family counseling.
Collapse
Affiliation(s)
- Sarah Hull
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom
| | - Gavin Arno
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom
| | - Pia Ostergaard
- Genetics Research Centre, Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
| | - Nikolas Pontikos
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Anthony G Robson
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom
| | - Andrew R Webster
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom
| | - Chris R Hogg
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom
| | - Genevieve A Wright
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom
| | - Robert H H Henderson
- Moorfields Eye Hospital, London, United Kingdom; Ophthalmology Department, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Carol-Anne Martin
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P Jackson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Sahar Mansour
- Genetics Research Centre, Molecular and Clinical Sciences, St George's University of London, London, United Kingdom; South West Thames Regional Genetics Service, St George's Healthcare NHS Trust, London, United Kingdom
| | - Anthony T Moore
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom; Ophthalmology Department, University of California, San Francisco, California
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom.
| |
Collapse
|