1
|
Hegarty R, Thompson RJ. Genetic aetiologies of acute liver failure. J Inherit Metab Dis 2024; 47:582-597. [PMID: 38499319 DOI: 10.1002/jimd.12733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Acute liver failure (ALF) is a rare, rapidly evolving, clinical syndrome with devastating consequences where definitive treatment is by emergency liver transplantation. Establishing a diagnosis can be challenging and, historically, the cause of ALF was unidentified in up to half of children. However, recent technological and clinical advances in genomic medicine have led to an increasing proportion being diagnosed with monogenic aetiologies of ALF. The conditions encountered include a diverse group of inherited metabolic disorders each with prognostic and treatment implications. Often these disorders are clinically indistinguishable and may even mimic disorders of immune regulation or red cell disorders. Rapid genomic sequencing for children with ALF is, therefore, a key component in the diagnostic work up today. This review focuses on the monogenic aetiologies of ALF.
Collapse
Affiliation(s)
- Robert Hegarty
- Paediatric Liver, GI and Nutrition Centre, King's College Hospital, London, UK
- Institute of Liver Studies, King's College London, London, UK
| | - Richard J Thompson
- Paediatric Liver, GI and Nutrition Centre, King's College Hospital, London, UK
- Institute of Liver Studies, King's College London, London, UK
| |
Collapse
|
2
|
McNamara JT, Zhu J, Wang Y, Li R. Gene dosage adaptations to mtDNA depletion and mitochondrial protein stress in budding yeast. G3 (BETHESDA, MD.) 2024; 14:jkad272. [PMID: 38126114 PMCID: PMC10849340 DOI: 10.1093/g3journal/jkad272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Mitochondria contain a local genome (mtDNA) comprising a small number of genes necessary for respiration, mitochondrial transcription and translation, and other vital functions. Various stressors can destabilize mtDNA leading to mtDNA loss. While some cells can survive mtDNA loss, they exhibit various deficiencies. Here, we investigated the impact of proteotoxicity on mitochondrial function by inducing mitochondrial unfolded protein stress in budding yeast. This led to rapid mtDNA loss, but aerobic conditioning imparted transient resistance to mitochondrial protein stress. We present a quantitative model of mtDNA loss in a growing cell population and measure its parameters. To identify genetic adaptations to mtDNA depletion, we performed a genome-wide screen for gene dosage increases that affect the growth of cells lacking mtDNA. The screen revealed a set of dosage suppressors that alleviate the growth impairment in mtDNA-deficient cells. Additionally, we show that these suppressors of mtDNA stress both bolster cell proliferation and prevent mtDNA loss during mitochondrial protein stress.
Collapse
Affiliation(s)
- Joshua T McNamara
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jin Zhu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yuhao Wang
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rong Li
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117411, Singapore
| |
Collapse
|
3
|
Warasnhe K, Özçay F, Kılıç E, Sezer T, Haberal M. SCYL1 deficiency: A rare entity with challenging neurological manifestations after liver transplantation. Pediatr Transplant 2024; 28:e14661. [PMID: 38149330 DOI: 10.1111/petr.14661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/07/2023] [Accepted: 10/26/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Pediatric acute liver failure (PALF) with undetermined etiology is associated with higher liver transplantation and lower spontaneous recovery (transplant-free) rates. The diagnostic odyssey in PALF cases hinders appropriate management and follow-up after liver transplantation. Advances in whole exome sequencing analysis have already been successful at identifying new genetic causes of PALF. CASE PRESENTATION We report a 17-year-old girl who underwent liver transplantation at the age of 7 months due to acute liver failure and presented later with abnormal neurological manifestations, that is, gait disturbances, dysarthria, and mental retardation that led us to the diagnosis of SCYL1 deficiency. CONCLUSION PALF cases should be screened for possible underlying genetic disorders. Genetic studies and reanalysis of whole-genome sequencing data may help identify new cases and clarify the genotype-phenotype correlation. SCYL1 deficiency should be suspected in PALF patients who develop neurological involvement after LT. Early diagnosis is vital for proper management of ALF crises in SCYL1 deficiency patients. Despite the reported favorable outcomes of ALF crises in SCYL1 deficiency, liver transplantation decision should be discussed on a case-by-case basis.
Collapse
Affiliation(s)
- Khaled Warasnhe
- Department of Pediatrics, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Figen Özçay
- Department of Pediatric Gastroenterology and Hepatology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Esra Kılıç
- Department of Pediatric Genetics, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Taner Sezer
- Department of Pediatric Neurology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Mehmet Haberal
- Department of General Surgery, Başkent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
4
|
Peters B, Dattner T, Schlieben LD, Sun T, Staufner C, Lenz D. Disorders of vesicular trafficking presenting with recurrent acute liver failure: NBAS, RINT1, and SCYL1 deficiency. J Inherit Metab Dis 2024. [PMID: 38279772 DOI: 10.1002/jimd.12707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/28/2024]
Abstract
Among genetic disorders of vesicular trafficking, there are three causing recurrent acute liver failure (RALF): NBAS, RINT1, and SCYL1-associated disease. These three disorders are characterized by liver crises triggered by febrile infections and account for a relevant proportion of RALF causes. While the frequency and severity of liver crises in NBAS and RINT1-associated disease decrease with age, patients with SCYL1 variants present with a progressive, cholestatic course. In all three diseases, there is a multisystemic, partially overlapping phenotype with variable expression, including liver, skeletal, and nervous systems, all organ systems with high secretory activity. There are no specific biomarkers for these diseases, and whole exome sequencing should be performed in patients with RALF of unknown etiology. NBAS, SCYL1, and RINT1 are involved in antegrade and retrograde vesicular trafficking. Pathomechanisms remain unclarified, but there is evidence of a decrease in concentration and stability of the protein primarily affected by the respective gene defect and its interaction partners, potentially causing impairment of vesicular transport. The impairment of protein secretion by compromised antegrade transport provides a possible explanation for different organ manifestations such as bone alteration due to lack of collagens or diabetes mellitus when insulin secretion is affected. Dysfunction of retrograde transport impairs membrane recycling and autophagy. The impairment of vesicular trafficking results in increased endoplasmic reticulum stress, which, in hepatocytes, can progress to hepatocytolysis. While there is no curative therapy, an early and consequent implementation of an emergency protocol seems crucial for optimal therapeutic management.
Collapse
Affiliation(s)
- Bianca Peters
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Tal Dattner
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Lea D Schlieben
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Centre, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tian Sun
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Christian Staufner
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Dominic Lenz
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
5
|
Youssef M, Mascia KL, McGuire B, Patel CR, Al Diffalha S, Dhall D, Lee G. CALFAN (Low γ-Glutamyl Transpeptidase (GGT) Cholestasis, Acute Liver Failure, and Neurodegeneration) Syndrome: A Case Report with 3-Year Follow-Up after Liver Transplantation in Early Adulthood. Case Reports Hepatol 2023; 2023:3010131. [PMID: 37554250 PMCID: PMC10406563 DOI: 10.1155/2023/3010131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/18/2023] [Accepted: 06/24/2023] [Indexed: 08/10/2023] Open
Abstract
CALFAN syndrome is an extremely rare disease consisting of recurrent pediatric acute liver failure (PALF), neurodegenerative diseases, and skeletal abnormalities associated with SCYL1 gene mutation. To date, three of 18 patients reported underwent liver transplantation in infancy and early childhood (7-23 months). Here, we report a case of CALFAN syndrome with infantile onset, recurrent jaundice/PALF requiring liver transplantation in early adulthood. At the most recent follow-up, 3 years after transplantation, the patient is doing well.
Collapse
Affiliation(s)
- Mariam Youssef
- Department of Pathology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Katherine L. Mascia
- Department of Genetics, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Brendan McGuire
- Department of Internal Medicine, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Chirag R. Patel
- Department of Pathology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Sameer Al Diffalha
- Department of Pathology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Deepti Dhall
- Department of Pathology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Goo Lee
- Department of Pathology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| |
Collapse
|
6
|
Isa HM, Alkaabi JF, Alhammadi WH, Marjan KA. Recurrent Acute Liver Failure in a Bahraini Child With a Novel Mutation of Spinocerebellar Ataxia-21. Cureus 2023; 15:e36249. [PMID: 37069859 PMCID: PMC10105628 DOI: 10.7759/cureus.36249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Acute liver failure (ALF) in children is a rare life-threatening condition. ALF is caused by different etiologies. The most common causes are drug-induced liver injury, infections, and metabolic diseases. Other rare causes of ALF are genetic disorders including spinocerebellar ataxia-21 (SCAR21). Herein, we describe the first Bahraini child who was diagnosed with a novel homozygous mutation in the SCYL1 gene. He was admitted to the hospital twice by the age of two and five years due to acute hepatic failure triggered by a febrile illness. Drug-induced, infectious causes, and metabolic diseases were excluded. The liver function then gradually recovered. The patient had delayed gross motor development as he started to walk at 20 months of age. After the first episode of ALF, he had progressive difficulty in walking leading to frequent falls and ending with a complete inability to walk. A whole-exome sequencing (WES) test revealed that the patient has previously unreported autosomal recessive pathogenic non-sense variation c.895A>T (p.Lys299Ter) in exon 7 of the SCYL1 gene in a homozygous status. It is confirmed that the pathogenicity of this variant in the SCYL1 gene was associated with SCAR21 disease.
Collapse
|
7
|
Coexistence of spinocerebellar ataxia autosomal recessive type 21 and Ehlers-Danlos syndrome spondylodysplastic type 3 in a patient. Clin Dysmorphol 2023; 32:25-28. [PMID: 36503921 DOI: 10.1097/mcd.0000000000000435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
mTORC1 controls Golgi architecture and vesicle secretion by phosphorylation of SCYL1. Nat Commun 2022; 13:4685. [PMID: 35948564 PMCID: PMC9365812 DOI: 10.1038/s41467-022-32487-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/30/2022] [Indexed: 12/04/2022] Open
Abstract
The protein kinase mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth and proliferation, supporting anabolic reactions and inhibiting catabolic pathways like autophagy. Its hyperactivation is a frequent event in cancer promoting tumor cell proliferation. Several intracellular membrane-associated mTORC1 pools have been identified, linking its function to distinct subcellular localizations. Here, we characterize the N-terminal kinase-like protein SCYL1 as a Golgi-localized target through which mTORC1 controls organelle distribution and extracellular vesicle secretion in breast cancer cells. Under growth conditions, SCYL1 is phosphorylated by mTORC1 on Ser754, supporting Golgi localization. Upon mTORC1 inhibition, Ser754 dephosphorylation leads to SCYL1 displacement to endosomes. Peripheral, dephosphorylated SCYL1 causes Golgi enlargement, redistribution of early and late endosomes and increased extracellular vesicle release. Thus, the mTORC1-controlled phosphorylation status of SCYL1 is an important determinant regulating subcellular distribution and function of endolysosomal compartments. It may also explain the pathophysiology underlying human genetic diseases such as CALFAN syndrome, which is caused by loss-of-function of SCYL1. mTORC1 is a master regulator of cell growth with well-known functions in inhibiting autophagic vesicle formation. Here, the authors show that mTORC1 also affects Golgi architecture and vesicle secretion by phosphorylating the scaffold protein SCYL1.
Collapse
|
9
|
Zhao J, Zhang H, Fan X, Yu X, Huai J. Lipid Dyshomeostasis and Inherited Cerebellar Ataxia. Mol Neurobiol 2022; 59:3800-3828. [PMID: 35420383 PMCID: PMC9148275 DOI: 10.1007/s12035-022-02826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
Cerebellar ataxia is a form of ataxia that originates from dysfunction of the cerebellum, but may involve additional neurological tissues. Its clinical symptoms are mainly characterized by the absence of voluntary muscle coordination and loss of control of movement with varying manifestations due to differences in severity, in the site of cerebellar damage and in the involvement of extracerebellar tissues. Cerebellar ataxia may be sporadic, acquired, and hereditary. Hereditary ataxia accounts for the majority of cases. Hereditary ataxia has been tentatively divided into several subtypes by scientists in the field, and nearly all of them remain incurable. This is mainly because the detailed mechanisms of these cerebellar disorders are incompletely understood. To precisely diagnose and treat these diseases, studies on their molecular mechanisms have been conducted extensively in the past. Accumulating evidence has demonstrated that some common pathogenic mechanisms exist within each subtype of inherited ataxia. However, no reports have indicated whether there is a common mechanism among the different subtypes of inherited cerebellar ataxia. In this review, we summarize the available references and databases on neurological disorders characterized by cerebellar ataxia and show that a subset of genes involved in lipid homeostasis form a new group that may cause ataxic disorders through a common mechanism. This common signaling pathway can provide a valuable reference for future diagnosis and treatment of ataxic disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue Yu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
10
|
Cassidy AM, Kuliyev E, Thomas DB, Chen H, Pelletier S. Dissecting protein function in vivo: Engineering allelic series in mice using CRISPR-Cas9 technology. Methods Enzymol 2022; 667:775-812. [PMID: 35525561 DOI: 10.1016/bs.mie.2022.03.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Allelic series are extremely valuable genetic tools to study gene function and identify essential structural features of gene products. In mice, allelic series have been engineered using conventional gene targeting in embryonic stem cells or chemical mutagenesis. While these approaches have provided valuable information about the function of genes, they remain cumbersome. Modern approaches such as CRISPR-Cas9 technologies now allow for the precise and cost-effective generation of mouse models with specific mutations, facilitating the development of allelic series. Here, we describe procedures for the generation of three types of mutations used to dissect protein function in vivo using CRISPR-Cas9 technology. This step-by-step protocol describes the generation of missense mutations, large in-frame deletions, and insertions of genetic material using SCY1-like 1 (Scyl1) as a model gene.
Collapse
Affiliation(s)
- Annelise M Cassidy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Emin Kuliyev
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Destinée B Thomas
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hanying Chen
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Stephane Pelletier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
11
|
Whole exome sequencing in Alopecia Areata identifies rare variants in KRT82. Nat Commun 2022; 13:800. [PMID: 35145093 PMCID: PMC8831607 DOI: 10.1038/s41467-022-28343-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/22/2021] [Indexed: 01/31/2023] Open
Abstract
Alopecia areata is a complex genetic disease that results in hair loss due to the autoimmune-mediated attack of the hair follicle. We previously defined a role for both rare and common variants in our earlier GWAS and linkage studies. Here, we identify rare variants contributing to Alopecia Areata using a whole exome sequencing and gene-level burden analyses approach on 849 Alopecia Areata patients compared to 15,640 controls. KRT82 is identified as an Alopecia Areata risk gene with rare damaging variants in 51 heterozygous Alopecia Areata individuals (6.01%), achieving genome-wide significance (p = 2.18E−07). KRT82 encodes a hair-specific type II keratin that is exclusively expressed in the hair shaft cuticle during anagen phase, and its expression is decreased in Alopecia Areata patient skin and hair follicles. Finally, we find that cases with an identified damaging KRT82 variant and reduced KRT82 expression have elevated perifollicular CD8 infiltrates. In this work, we utilize whole exome sequencing to successfully identify a significant Alopecia Areata disease-relevant gene, KRT82, and reveal a proposed mechanism for rare variant predisposition leading to disrupted hair shaft integrity. Common variants have been discovered to be associated with Alopecia Areata; however, rare variants have been less well studied. Here, the authors use whole-exome sequencing to identify associated rare variants in the hair keratin gene KRT82. Further, they find that individuals with Alopecia Areata have reduced expression of KRT82 in the skin and hair follicle.
Collapse
|
12
|
Kadri NK, Mapel XM, Pausch H. The intronic branch point sequence is under strong evolutionary constraint in the bovine and human genome. Commun Biol 2021; 4:1206. [PMID: 34675361 PMCID: PMC8531310 DOI: 10.1038/s42003-021-02725-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022] Open
Abstract
The branch point sequence is a cis-acting intronic motif required for mRNA splicing. Despite their functional importance, branch point sequences are not routinely annotated. Here we predict branch point sequences in 179,476 bovine introns and investigate their variability using a catalogue of 29.4 million variants detected in 266 cattle genomes. We localize the bovine branch point within a degenerate heptamer "nnyTrAy". An adenine residue at position 6, that acts as branch point, and a thymine residue at position 4 of the heptamer are more strongly depleted for mutations than coding sequences suggesting extreme purifying selection. We provide evidence that mutations affecting these evolutionarily constrained residues lead to alternative splicing. We confirm evolutionary constraints on branch point sequences using a catalogue of 115 million SNPs established from 3,942 human genomes of the gnomAD database.
Collapse
Affiliation(s)
- Naveen Kumar Kadri
- grid.5801.c0000 0001 2156 2780Animal Genomics, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Xena Marie Mapel
- grid.5801.c0000 0001 2156 2780Animal Genomics, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Hubert Pausch
- grid.5801.c0000 0001 2156 2780Animal Genomics, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| |
Collapse
|
13
|
Saito M, Nakayama M, Fujita K, Uchida A, Yano H, Goto S, Okazawa H, Sone M. Role of the Drosophila YATA protein in the proper subcellular localization of COPI revealed by in vivo analysis. Genes Genet Syst 2021; 95:303-314. [PMID: 33583916 DOI: 10.1266/ggs.20-00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
yata mutants of Drosophila melanogaster exhibit phenotypes including progressive brain shrinkage, developmental abnormalities and shortened lifespan, whereas in mammals, null mutations of the yata ortholog Scyl1 result in motor neuron degeneration. yata mutation also causes defects in the anterograde intracellular trafficking of a subset of proteins including APPL, which is the Drosophila ortholog of mammalian APP, a causative molecule in Alzheimer's disease. SCYL1 binds and regulates the function of coat protein complex I (COPI) in secretory vesicles. Here, we reveal a role for the Drosophila YATA protein in the proper localization of COPI. Immunohistochemical analyses performed using confocal microscopy and structured illumination microscopy showed that YATA colocalizes with COPI and GM130, a cis-Golgi marker. Analyses using transgenically expressed YATA with a modified N-terminal sequence revealed that the N-terminal portion of YATA is required for the proper subcellular localization of YATA. Analysis using transgenically expressed YATA proteins in which the C-terminal sequence was modified revealed a function for the C-terminal portion of YATA in the subcellular localization of COPI. Notably, when YATA was mislocalized, it also caused the mislocalization of COPI, indicating that YATA plays a role in directing COPI to the proper subcellular site. Moreover, when both YATA and COPI were mislocalized, the staining pattern of GM130 revealed Golgi with abnormal elongated shapes. Thus, our in vivo data indicate that YATA plays a role in the proper subcellular localization of COPI.
Collapse
Affiliation(s)
- Maiko Saito
- Department of Biomolecular Science, Faculty of Science, Toho University
| | - Minoru Nakayama
- Department of Biomolecular Science, Faculty of Science, Toho University
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University
| | - Atsuko Uchida
- Department of Neuroscience, The Ohio State University
| | | | - Satoshi Goto
- Department of Life Science, College of Science, Rikkyo University
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University
| | - Masaki Sone
- Department of Biomolecular Science, Faculty of Science, Toho University
| |
Collapse
|
14
|
McNiven V, Gattini D, Siddiqui I, Pelletier S, Brill H, Avitzur Y, Mercimek-Andrews S. SCYL1 disease and liver transplantation diagnosed by reanalysis of exome sequencing and deletion/duplication analysis of SCYL1. Am J Med Genet A 2021; 185:1091-1097. [PMID: 33442927 DOI: 10.1002/ajmg.a.62079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022]
Abstract
SCYL1 disease results from biallelic pathogenic variants in SCYL1. We report two new patients with severe hepatic phenotype requiring liver transplantation. Patient charts reviewed. DNA samples and skin fibroblasts were utilized. Literature was reviewed. 13-year-old boy and 9-year-old girl siblings had acute liver insufficiency and underwent living related donor liver transplantation in infancy with no genetic diagnosis. Both had tremor, global developmental delay, and cognitive dysfunction during their follow-up in the medical genetic clinic for diagnostic investigations after their liver transplantation. Exome sequencing identified a likely pathogenic variant (c.399delC; p.Asn133Lysfs*136) in SCYL1. Deletion/duplication analysis of SCYL1 identified deletions of exons 7-8 in Patient 1. Both variants were confirmed in Patient 2 and the diagnosis of SCYL1 disease was confirmed in both patients at the age of 13 and 9 years, respectively. SCYL1 protein was not expressed in both patients' fibroblast using western blot analysis. Sixteen patients with SCYL1 disease reported in the literature. Liver phenotype (n = 16), neurological phenotype (n = 13) and skeletal phenotype (n = 11) were present. Both siblings required liver transplantation in infancy and had variable phenotypes. Exome sequencing may miss the diagnosis and phenotyping of patients can help to diagnose patients.
Collapse
Affiliation(s)
- Vanda McNiven
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Daniela Gattini
- Division of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Iram Siddiqui
- Department of Pathology, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephane Pelletier
- Genome Editing Center, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Purdue University, Indianapolis, Indiana, USA
| | - Herbert Brill
- Division of Gastroenterology & Nutrition, Department of Pediatrics, McMaster Children's Hospital, McMaster University, Hamilton, Ontario, Canada
| | - Yaron Avitzur
- Division of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Saadet Mercimek-Andrews
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Genetics, University of Alberta, Stollery Children's Hospital, Alberta Health Services, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Amano G, Matsuzaki S, Mori Y, Miyoshi K, Han S, Shikada S, Takamura H, Yoshimura T, Katayama T. SCYL1 arginine methylation by PRMT1 is essential for neurite outgrowth via Golgi morphogenesis. Mol Biol Cell 2020; 31:1963-1973. [PMID: 32583741 PMCID: PMC7543066 DOI: 10.1091/mbc.e20-02-0100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Arginine methylation is a common posttranslational modification that modulates protein function. SCY1-like pseudokinase 1 (SCYL1) is crucial for neuronal functions and interacts with γ2-COP to form coat protein complex I (COPI) vesicles that regulate Golgi morphology. However, the molecular mechanism by which SCYL1 is regulated remains unclear. Here, we report that the γ2-COP-binding site of SCYL1 is arginine-methylated by protein arginine methyltransferase 1 (PRMT1) and that SCYL1 arginine methylation is important for the interaction of SCYL1 with γ2-COP. PRMT1 was colocalized with SCYL1 in the Golgi fraction. Inhibition of PRMT1 suppressed axon outgrowth and dendrite complexity via abnormal Golgi morphology. Knockdown of SCYL1 by small interfering RNA (siRNA) inhibited axon outgrowth, and the inhibitory effect was rescued by siRNA-resistant SCYL1, but not SCYL1 mutant, in which the arginine methylation site was replaced. Thus, PRMT1 regulates Golgi morphogenesis via SCYL1 arginine methylation. We propose that SCYL1 arginine methylation by PRMT1 contributes to axon and dendrite morphogenesis in neurons.
Collapse
Affiliation(s)
- Genki Amano
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinsuke Matsuzaki
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | - Yasutake Mori
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Anatomy, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan
| | - Ko Miyoshi
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sarina Han
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sho Shikada
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hironori Takamura
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Yoshimura
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taiichi Katayama
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Niu LG, Liu P, Wang ZW, Chen B. Slo2 potassium channel function depends on RNA editing-regulated expression of a SCYL1 protein. eLife 2020; 9:53986. [PMID: 32314960 PMCID: PMC7195191 DOI: 10.7554/elife.53986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/20/2020] [Indexed: 12/28/2022] Open
Abstract
Slo2 potassium channels play important roles in neuronal function, and their mutations in humans may cause epilepsies and cognitive defects. However, it is largely unknown how Slo2 is regulated by other proteins. Here we show that the function of C. elegans Slo2 (SLO-2) depends on adr-1, a gene important to RNA editing. ADR-1 promotes SLO-2 function not by editing the transcripts of slo-2 but those of scyl-1, which encodes an orthologue of mammalian SCYL1. Transcripts of scyl-1 are greatly decreased in adr-1 mutants due to deficient RNA editing at a single adenosine in their 3’-UTR. SCYL-1 physically interacts with SLO-2 in neurons. Single-channel open probability (Po) of neuronal SLO-2 is ~50% lower in scyl-1 knockout mutant than wild type. Moreover, human Slo2.2/Slack Po is doubled by SCYL1 in a heterologous expression system. These results suggest that SCYL-1/SCYL1 is an evolutionarily conserved regulator of Slo2 channels.
Collapse
Affiliation(s)
- Long-Gang Niu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, United States
| | - Ping Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, United States
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center, Farmington, United States
| | - Bojun Chen
- Department of Neuroscience, University of Connecticut Health Center, Farmington, United States
| |
Collapse
|
17
|
Chavany J, Cano A, Roquelaure B, Bourgeois P, Boubnova J, Gaignard P, Hoebeke C, Reynaud R, Rhomer B, Slama A, Badens C, Chabrol B, Fabre A. Mutations in NBAS and SCYL1, genetic causes of recurrent liver failure in children: Three case reports and a literature review. Arch Pediatr 2020; 27:155-159. [DOI: 10.1016/j.arcped.2020.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/15/2019] [Accepted: 01/25/2020] [Indexed: 12/14/2022]
|
18
|
Arimoto E, Kawashima Y, Choi T, Unagami M, Akiyama S, Tomizawa M, Yano H, Suzuki E, Sone M. Analysis of a cellular structure observed in the compound eyes of Drosophila white; yata mutants and white mutants. Biol Open 2020; 9:bio.047043. [PMID: 31862863 PMCID: PMC6994944 DOI: 10.1242/bio.047043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously identified the Drosophila yata mutant, which showed phenotypes including progressive vacuolization of the white-coloured compound eye, progressive shrinkage of the brain and a shortened lifespan. The yata gene was shown to be involved in controlling intracellular trafficking of the Amyloid precursor protein-like protein, which is an orthologue of Amyloid precursor protein, which is a causative molecule of Alzheimer's disease. In this study, we examined the phenotype of the compound eye of the yata mutant using electron microscopy and confocal microscopy. We found that abnormal cellular structures that seemed to originate from bleb-like structures and contained vesicles and organelles, such as multivesicular bodies and autophagosomes, were observed in aged white; yata mutants and aged white mutants. These structures were not observed in newly eclosed flies and the presence of the structures was suppressed in flies grown under constant dark conditions after eclosion. The structures were not observed in newly eclosed red-eyed yata mutants or wild-type flies, but were observed in very aged red-eyed wild-type flies. Thus, our data suggest that the observed structures are formed as a result of changes associated with exposure to light after eclosion in white mutants, white; yata mutants and aged flies.
Collapse
Affiliation(s)
- Eri Arimoto
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi 274-8510, Japan
| | - Yutaro Kawashima
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi 274-8510, Japan
| | - Taein Choi
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi 274-8510, Japan
| | - Mami Unagami
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi 274-8510, Japan
| | - Shintaro Akiyama
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi 274-8510, Japan
| | - Mizuki Tomizawa
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi 274-8510, Japan
| | - Hiroyuki Yano
- Technical Section, National Institute of Genetics, Mishima 411-8540, Japan
| | - Emiko Suzuki
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima 411-8540, Japan.,Department of Genetics, SOKENDAI, Mishima 411-8540, Japan
| | - Masaki Sone
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi 274-8510, Japan
| |
Collapse
|
19
|
Beaudin M, Matilla-Dueñas A, Soong BW, Pedroso JL, Barsottini OG, Mitoma H, Tsuji S, Schmahmann JD, Manto M, Rouleau GA, Klein C, Dupre N. The Classification of Autosomal Recessive Cerebellar Ataxias: a Consensus Statement from the Society for Research on the Cerebellum and Ataxias Task Force. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1098-1125. [PMID: 31267374 PMCID: PMC6867988 DOI: 10.1007/s12311-019-01052-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is currently no accepted classification of autosomal recessive cerebellar ataxias, a group of disorders characterized by important genetic heterogeneity and complex phenotypes. The objective of this task force was to build a consensus on the classification of autosomal recessive ataxias in order to develop a general approach to a patient presenting with ataxia, organize disorders according to clinical presentation, and define this field of research by identifying common pathogenic molecular mechanisms in these disorders. The work of this task force was based on a previously published systematic scoping review of the literature that identified autosomal recessive disorders characterized primarily by cerebellar motor dysfunction and cerebellar degeneration. The task force regrouped 12 international ataxia experts who decided on general orientation and specific issues. We identified 59 disorders that are classified as primary autosomal recessive cerebellar ataxias. For each of these disorders, we present geographical and ethnical specificities along with distinctive clinical and imagery features. These primary recessive ataxias were organized in a clinical and a pathophysiological classification, and we present a general clinical approach to the patient presenting with ataxia. We also identified a list of 48 complex multisystem disorders that are associated with ataxia and should be included in the differential diagnosis of autosomal recessive ataxias. This classification is the result of a consensus among a panel of international experts, and it promotes a unified understanding of autosomal recessive cerebellar disorders for clinicians and researchers.
Collapse
Affiliation(s)
- Marie Beaudin
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Antoni Matilla-Dueñas
- Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Bing-Weng Soong
- Department of Neurology, Shuang Ho Hospital and Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan, Republic of China
- National Yang-Ming University School of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Jose Luiz Pedroso
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Orlando G Barsottini
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Shoji Tsuji
- The University of Tokyo, Tokyo, Japan
- International University of Health and Welfare, Chiba, Japan
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, UMons, Mons, Belgium
| | | | | | - Nicolas Dupre
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
20
|
Li JQ, Gong JY, Knisely AS, Zhang MH, Wang JS. Recurrent acute liver failure associated with novel SCYL1 mutation: A case report. World J Clin Cases 2019; 7:494-499. [PMID: 30842961 PMCID: PMC6397814 DOI: 10.12998/wjcc.v7.i4.494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/16/2019] [Accepted: 01/30/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pediatric recurrent acute liver failure (RALF) with recovery between episodes is rare. Causes include autoimmune disease, which may flare and subside; intermittent exposure to toxins, as with ingestions; and metabolic disorders, among them the fever-associated crises ascribed to biallelic mutations in SCYL1, with RALF beginning in infancy. SCYL1 disease manifest with RALF, as known to date, includes central and peripheral neurologic and muscular morbidity (hepatocerebellar neuropathy syndrome). Primary ventilatory and skeletal diseases also have been noted in some reports.
CASE SUMMARY We describe a Han Chinese boy in whom fever-associated RALF began at age 14 mo. Bilateral femoral head abnormalities and mild impairment of neurologic function were first noted aged 8 years 6 mo. Liver biopsy after the third RALF episode (7 years) and during resolution of the fourth RALF episode (8 years 6 mo) found abnormal architecture and hepatic fibrosis, respectively. Whole-exome sequencing revealed homozygosity for the novel frameshift mutation c.92_93insGGGCCCT, p.(H32Gfs*20) in SCYL1 (parental heterozygosity confirmed).
CONCLUSION Our findings expand the mutational and clinical spectrum of SCYL1 disease. In our patient a substantial neurologic component was lacking and skeletal disease was identified relatively late.
Collapse
Affiliation(s)
- Jia-Qi Li
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Jing-Yu Gong
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - A S Knisely
- Institut für Pathologie, Medizinische Universität Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
| | - Mei-Hong Zhang
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children’s Hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|