1
|
Balciuniene J, Liu R, Bean L, Guo F, Nallamilli BRR, Guruju N, Chen-Deutsch X, Yousaf R, Fura K, Chin E, Mathur A, Ma Z, Carmichael J, da Silva C, Collins C, Hegde M. At-Risk Genomic Findings for Pediatric-Onset Disorders From Genome Sequencing vs Medically Actionable Gene Panel in Proactive Screening of Newborns and Children. JAMA Netw Open 2023; 6:e2326445. [PMID: 37523181 PMCID: PMC10391308 DOI: 10.1001/jamanetworkopen.2023.26445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Importance Although the clinical utility of genome sequencing for critically ill children is well recognized, its utility for proactive pediatric screening is not well explored. Objective To evaluate molecular findings from screening ostensibly healthy children with genome sequencing compared with a gene panel for medically actionable pediatric conditions. Design, Setting, and Participants This case series study was conducted among consecutive, apparently healthy children undergoing proactive genetic screening for pediatric disorders by genome sequencing (n = 562) or an exome-based panel of 268 genes (n = 606) from March 1, 2018, through July 31, 2022. Exposures Genetic screening for pediatric-onset disorders using genome sequencing or an exome-based panel of 268 genes. Main Outcomes and Measures Molecular findings indicative of genetic disease risk. Results Of 562 apparently healthy children (286 girls [50.9%]; median age, 29 days [IQR, 9-117 days]) undergoing screening by genome sequencing, 46 (8.2%; 95% CI, 5.9%-10.5%) were found to be at risk for pediatric-onset disease, including 22 children (3.9%) at risk for high-penetrance disorders. Sequence analysis uncovered molecular diagnoses among 32 individuals (5.7%), while copy number variant analysis uncovered molecular diagnoses among 14 individuals (2.5%), including 4 individuals (0.7%) with chromosome scale abnormalities. Overall, there were 47 molecular diagnoses, with 1 individual receiving 2 diagnoses; of the 47 potential diagnoses, 22 (46.8%) were associated with high-penetrance conditions. Pathogenic variants in medically actionable pediatric genes were found in 6 individuals (1.1%), constituting 12.8% (6 of 47) of all diagnoses. At least 1 pharmacogenomic variant was reported for 89.0% (500 of 562) of the cohort. In contrast, of 606 children (293 girls [48.3%]; median age, 26 days [IQR, 10-67 days]) undergoing gene panel screening, only 13 (2.1%; 95% CI, 1.0%-3.3%) resulted in potential childhood-onset diagnoses, a significantly lower rate than those screened by genome sequencing (P < .001). Conclusions and Relevance In this case series study, genome sequencing as a proactive screening approach for children, due to its unrestrictive gene content and technical advantages in comparison with an exome-based gene panel for medically actionable childhood conditions, uncovered a wide range of heterogeneous high-penetrance pediatric conditions that could guide early interventions and medical management.
Collapse
Affiliation(s)
| | - Ruby Liu
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Lora Bean
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Fen Guo
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | | | - Naga Guruju
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | | | - Rizwan Yousaf
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Kristina Fura
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Ephrem Chin
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Abhinav Mathur
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Zeqiang Ma
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | | | | | | | - Madhuri Hegde
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
Milko LV, Berg JS. Age-Based Genomic Screening during Childhood: Ethical and Practical Considerations in Public Health Genomics Implementation. Int J Neonatal Screen 2023; 9:36. [PMID: 37489489 PMCID: PMC10366892 DOI: 10.3390/ijns9030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023] Open
Abstract
Genomic sequencing offers an unprecedented opportunity to detect inherited variants that are implicated in rare Mendelian disorders, yet there are many challenges to overcome before this technology can routinely be applied in the healthy population. The age-based genomic screening (ABGS) approach is a novel alternative to genome-scale sequencing at birth that aims to provide highly actionable genetic information to parents over the course of their child's routine health care. ABGS utilizes an established metric to identify conditions with high clinical actionability and incorporates information about the age of onset and age of intervention to determine the optimal time to screen for any given condition. Ongoing partnerships with parents and providers are instrumental to the co-creation of educational resources and strategies to address potential implementation barriers. Implementation science frameworks and informative empirical data are used to evaluate strategies to establish this unique clinical application of targeted genomic sequencing. Ultimately, a pilot project conducted in primary care pediatrics clinics will assess patient and implementation outcomes, parent and provider perspectives, and the feasibility of ABGS. A validated, stakeholder-informed, and practical ABGS program will include hundreds of conditions that are actionable during infancy and childhood, setting the stage for a longitudinal implementation that can assess clinical and health economic outcomes.
Collapse
Affiliation(s)
- Laura V. Milko
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Rd., Chapel Hill, NC 27599-7264, USA;
| | | |
Collapse
|
3
|
Ong CSB, Fok RW, Tan RCA, Fung SM, Sun S, Ngeow JYY. General practitioners' (GPs) experience, attitudes and needs on clinical genetic services: a systematic review. Fam Med Community Health 2022; 10:fmch-2021-001515. [PMID: 36450397 PMCID: PMC9717000 DOI: 10.1136/fmch-2021-001515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVE The proliferation and growing demands of genetic testing are anticipated to revolutionise medical practice. As gatekeepers of healthcare systems, general practitioners (GPs) are expected to play a critical role in the provision of clinical genetic services. This paper aims to review existing literature on GPs' experience, attitudes and needs towards clinical genetic services. DESIGN A systematic mixed studies review of papers published between 2010 and 2022. ELIGIBILITY CRITERIA The inclusion criterion was peer-reviewed articles in English and related to GPs' experience, views and needs on any genetic testing. INFORMATION SOURCES The PubMed, PsycINFO, Cochrane, EMBASE databases were searched using Mesh terms, Boolean and wildcards combinations to identify peer-reviewed articles published from 2010 to 2022. Study quality was assessed using Mixed Methods Appraisal Tool. Only articles that fulfilled the inclusion criteria were selected. A thematic meta-synthesis was conducted on the final sample of selected articles to identify key themes. RESULTS A total of 62 articles were included in the review. Uncertainty over GPs' role in providing genetic services were attributed by the lack of confidence and time constraints and rarity of cases may further exacerbate their reluctance to shoulder an expanded role in clinical genetics. Although educational interventions were found to increasing GPs' knowledge and confidence to carry out genetic tasks, varied interest on genetic testing and preference for a shared care model with other genetic health professionals have resulted in minimal translation to clinical adoption. CONCLUSION This review highlights the need for deeper exploration of GPs' varied experience and attitudes towards clinical genetic services to better facilitate targeted intervention in the adoption of clinical genetics.
Collapse
Affiliation(s)
- Cheryl Siow Bin Ong
- Sociology, School of Social Sciences, Nanyang Technological University, Singapore
| | - Rose Wai‑Yee Fok
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Ryo Chee Ann Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Si Ming Fung
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Shirley Sun
- Sociology, School of Social Sciences, Nanyang Technological University, Singapore
| | - Joanne Yuen Yie Ngeow
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
4
|
Shen EC, Srinivasan S, Passero LE, Allen CG, Dixon M, Foss K, Halliburton B, Milko LV, Smit AK, Carlson R, Roberts MC. Barriers and Facilitators for Population Genetic Screening in Healthy Populations: A Systematic Review. Front Genet 2022; 13:865384. [PMID: 35860476 PMCID: PMC9289280 DOI: 10.3389/fgene.2022.865384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022] Open
Abstract
Studies suggest that 1-3% of the general population in the United States unknowingly carry a genetic risk factor for a common hereditary disease. Population genetic screening is the process of offering otherwise healthy patients in the general population testing for genomic variants that predispose them to diseases that are clinically actionable, meaning that they can be prevented or mitigated if they are detected early. Population genetic screening may significantly reduce morbidity and mortality from these diseases by informing risk-specific prevention or treatment strategies and facilitating appropriate participation in early detection. To better understand current barriers, facilitators, perceptions, and outcomes related to the implementation of population genetic screening, we conducted a systematic review and searched PubMed, Embase, and Scopus for articles published from date of database inception to May 2020. We included articles that 1) detailed the perspectives of participants in population genetic screening programs and 2) described the barriers, facilitators, perceptions, and outcomes related to population genetic screening programs among patients, healthcare providers, and the public. We excluded articles that 1) focused on direct-to-consumer or risk-based genetic testing and 2) were published before January 2000. Thirty articles met these criteria. Barriers and facilitators to population genetic screening were organized by the Social Ecological Model and further categorized by themes. We found that research in population genetic screening has focused on stakeholder attitudes with all included studies designed to elucidate individuals' perceptions. Additionally, inadequate knowledge and perceived limited clinical utility presented a barrier for healthcare provider uptake. There were very few studies that conducted long-term follow-up and evaluation of population genetic screening. Our findings suggest that these and other factors, such as prescreen counseling and education, may play a role in the adoption and implementation of population genetic screening. Future studies to investigate macro-level determinants, strategies to increase provider buy-in and knowledge, delivery models for prescreen counseling, and long-term outcomes of population genetic screening are needed for the effective design and implementation of such programs. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020198198.
Collapse
Affiliation(s)
- Emily C Shen
- College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Swetha Srinivasan
- Division of Pharmaceutical Outcomes and Policy, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Lauren E Passero
- Division of Pharmaceutical Outcomes and Policy, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Caitlin G Allen
- Department of Public Health Science, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Madison Dixon
- Department of Behavioral, Social, and Health Education Science, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Kimberly Foss
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Brianna Halliburton
- College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Laura V Milko
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Amelia K Smit
- The Daffodil Centre, University of Sydney, A Joint Venture with Cancer Council NSW, Sydney, NSW, Australia.,Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| | - Rebecca Carlson
- Health Sciences Library, University of North Carolina, Chapel Hill, NC, United States
| | - Megan C Roberts
- Division of Pharmaceutical Outcomes and Policy, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Mwale S, Farsides B. Imagining genomic medicine futures in primary care: General practitioners' views on mainstreaming genomics in the National Health Service. SOCIOLOGY OF HEALTH & ILLNESS 2021; 43:2121-2140. [PMID: 34773708 DOI: 10.1111/1467-9566.13384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 05/24/2023]
Abstract
Genomic medicine has captured the imaginations of policymakers and medical scientists keen to harness its health and economic potentials. In 2012, the UK government launched the 100,000 Genomes Project to sequence the genomes of British National Health Service (NHS) patients, laying the ground for mainstreaming genomic medicine in the NHS and developing the UK's genomics industry. However, the recent research and reports from national bodies monitoring genomic medicine's roll-out suggest both ethical and practical challenges for health-care professionals. Against this backdrop, this paper, drawing on qualitative research interviews with general practitioners (GPs) and documentary analysis of policy, explores GPs' views on mainstreaming genomic medicine in the NHS and implications for their practice. Analysing the NHS's genomic medicine agenda as a 'sociotechnical imaginary', we demonstrate that whilst sociotechnical imaginaries are construed as collectively shared understandings of the future, official visions of genomic medicine diverge from those at the forefront of health-care service delivery. Whilst policy discourse evokes hope and transformation of health care, some GPs see technology in formation, an unattainable 'utopia', with no relevance to their everyday clinical practice. Finding space for genomics requires bridging the gap between 'work as imagined' at the policy level and 'work as done' in health-care delivery.
Collapse
Affiliation(s)
- Shadreck Mwale
- Brighton and Sussex Medical School, Division of Clinical and Experimental Medicine, Brighton, UK
| | - Bobbie Farsides
- Brighton and Sussex Medical School, Division of Clinical and Experimental Medicine, Brighton, UK
| |
Collapse
|