1
|
Zhang Y, Li Y, Guo R, Xu W, Liu X, Zhao C, Guo Q, Xu W, Ni X, Hao C, Cui Y, Li W. Genetic diagnostic yields of 354 Chinese ASD children with rare mutations by a pipeline of genomic tests. Front Genet 2023; 14:1108440. [PMID: 37035742 PMCID: PMC10076746 DOI: 10.3389/fgene.2023.1108440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Purpose: To establish an effective genomic diagnosis pipeline for children with autism spectrum disorder (ASD) for its genetic etiology and intervention. Methods: A cohort of 354 autism spectrum disorder patients were obtained from Beijing Children's Hospital, Capital Medical University. Peripheral blood samples of the patients were collected for whole genome sequencing (WGS) and RNA sequencing (RNAseq). Sequencing data analyses were performed for mining the single nucleotide variation (SNV), copy number variation (CNV) and structural variation (SV). Sanger sequencing and quantitative PCR were used to verify the positive results. Results: Among 354 patients, 9 cases with pathogenic/likely pathogenic copy number variation and 10 cases with pathogenic/likely pathogenic single nucleotide variations were detected, with a total positive rate of 5.3%. Among these 9 copy number variation cases, 5 were de novo and 4 were inherited. Among the 10 de novo single nucleotide variations, 7 were previously unreported. The pathological de novo mutations account for 4.2% in our cohort. Conclusion: Rare mutations of copy number variations and single nucleotide variations account for a relatively small proportion of autism spectrum disorder children, which can be easily detected by a genomic testing pipeline of combined whole genome sequencing and RNA sequencing. This is important for early etiological diagnosis and precise management of autism spectrum disorder with rare mutations.
Collapse
Affiliation(s)
- Yue Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Ying Li
- Department of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Ruolan Guo
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Wenjian Xu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xuanshi Liu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Chunlin Zhao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Qi Guo
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Wenshan Xu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xin Ni
- National Center for Children’s Health, Beijing, China
- *Correspondence: Wei Li, ; Yonghua Cui, ; Chanjuan Hao, ; Xin Ni,
| | - Chanjuan Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- *Correspondence: Wei Li, ; Yonghua Cui, ; Chanjuan Hao, ; Xin Ni,
| | - Yonghua Cui
- Department of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- *Correspondence: Wei Li, ; Yonghua Cui, ; Chanjuan Hao, ; Xin Ni,
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- *Correspondence: Wei Li, ; Yonghua Cui, ; Chanjuan Hao, ; Xin Ni,
| |
Collapse
|
2
|
Unni P, Friend J, Weinberg J, Okur V, Hochscherf J, Dominguez I. Predictive functional, statistical and structural analysis of CSNK2A1 and CSNK2B variants linked to neurodevelopmental diseases. Front Mol Biosci 2022; 9:851547. [PMID: 36310603 PMCID: PMC9608649 DOI: 10.3389/fmolb.2022.851547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022] Open
Abstract
Okur-Chung Neurodevelopmental Syndrome (OCNDS) and Poirier-Bienvenu Neurodevelopmental Syndrome (POBINDS) were recently identified as rare neurodevelopmental disorders. OCNDS and POBINDS are associated with heterozygous mutations in the CSNK2A1 and CSNK2B genes which encode CK2α, a serine/threonine protein kinase, and CK2β, a regulatory protein, respectively, which together can form a tetrameric enzyme called protein kinase CK2. A challenge in OCNDS and POBINDS is to understand the genetic basis of these diseases and the effect of the various CK2⍺ and CK2β mutations. In this study we have collected all variants available to date in CSNK2A1 and CSNK2B, and identified hotspots. We have investigated CK2⍺ and CK2β missense mutations through prediction programs which consider the evolutionary conservation, functionality and structure or these two proteins, compared these results with published experimental data on CK2α and CK2β mutants, and suggested prediction programs that could help predict changes in functionality of CK2α mutants. We also investigated the potential effect of CK2α and CK2β mutations on the 3D structure of the proteins and in their binding to each other. These results indicate that there are functional and structural consequences of mutation of CK2α and CK2β, and provide a rationale for further study of OCNDS and POBINDS-associated mutations. These data contribute to understanding the genetic and functional basis of these diseases, which is needed to identify their underlying mechanisms.
Collapse
Affiliation(s)
- Prasida Unni
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston University, Boston, MA, United States
| | - Jack Friend
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston University, Boston, MA, United States
| | - Janice Weinberg
- Department of Biostatistics, Boston University School of Public Health, Boston University, Boston, MA, United States
| | - Volkan Okur
- New York Genome Center, New York, NY, United States
| | - Jennifer Hochscherf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Isabel Dominguez
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston University, Boston, MA, United States
- *Correspondence: Isabel Dominguez,
| |
Collapse
|
3
|
Krgovic D, Gorenjak M, Rihar N, Opalic I, Stangler Herodez S, Gregoric Kumperscak H, Dovc P, Kokalj Vokac N. Impaired Neurodevelopmental Genes in Slovenian Autistic Children Elucidate the Comorbidity of Autism With Other Developmental Disorders. Front Mol Neurosci 2022; 15:912671. [PMID: 35813072 PMCID: PMC9259896 DOI: 10.3389/fnmol.2022.912671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorders (ASD) represent a phenotypically heterogeneous group of patients that strongly intertwine with other neurodevelopmental disorders (NDDs), with genetics playing a significant role in their etiology. Whole exome sequencing (WES) has become predominant in molecular diagnostics for ASD by considerably increasing the diagnostic yield. However, the proportion of undiagnosed patients still remains high due to complex clinical presentation, reduced penetrance, and lack of segregation analysis or clinical information. Thus, reverse phenotyping, where we first identified a possible genetic cause and then determine its clinical relevance, has been shown to be a more efficient approach. WES was performed on 147 Slovenian pediatric patients with suspected ASD. Data analysis was focused on identifying ultrarare or “single event” variants in ASD-associated genes and further expanded to NDD-associated genes. Protein function and gene prioritization were performed on detected clinically relevant variants to determine their role in ASD etiology and phenotype. Reverse phenotyping revealed a pathogenic or likely pathogenic variant in ASD-associated genes in 20.4% of patients, with subsequent segregation analysis indicating that 14 were de novo variants and 1 was presumed compound heterozygous. The diagnostic yield was further increased by 2.7% by the analysis of ultrarare or “single event” variants in all NDD-associated genes. Protein function analysis established that genes in which variants of unknown significance (VUS) were detected were predominantly the cause of intellectual disability (ID), and in most cases, features of ASD as well. Using such an approach, variants in rarely described ASD-associated genes, such as SIN3B, NR4A2, and GRIA1, were detected. By expanding the analysis to include functionally similar NDD genes, variants in KCNK9, GNE, and other genes were identified. These would probably have been missed by classic genotype–phenotype analysis. Our study thus demonstrates that in patients with ASD, analysis of ultrarare or “single event” variants obtained using WES with the inclusion of functionally similar genes and reverse phenotyping obtained a higher diagnostic yield despite limited clinical data. The present study also demonstrates that most of the causative genes in our cohort were involved in the syndromic form of ASD and confirms their comorbidity with other developmental disorders.
Collapse
Affiliation(s)
- Danijela Krgovic
- Laboratory of Medical Genetics, University Medical Centre Maribor, Maribor, Slovenia
- Department of Molecular Biology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- *Correspondence: Danijela Krgovic,
| | - Mario Gorenjak
- Centre for Human Molecular Genetics, and Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Nika Rihar
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Iva Opalic
- Laboratory of Medical Genetics, University Medical Centre Maribor, Maribor, Slovenia
| | - Spela Stangler Herodez
- Laboratory of Medical Genetics, University Medical Centre Maribor, Maribor, Slovenia
- Department of Molecular Biology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | - Peter Dovc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nadja Kokalj Vokac
- Laboratory of Medical Genetics, University Medical Centre Maribor, Maribor, Slovenia
- Department of Molecular Biology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|