1
|
Halama A, Zaghlool S, Thareja G, Kader S, Al Muftah W, Mook-Kanamori M, Sarwath H, Mohamoud YA, Stephan N, Ameling S, Pucic Baković M, Krumsiek J, Prehn C, Adamski J, Schwenk JM, Friedrich N, Völker U, Wuhrer M, Lauc G, Najafi-Shoushtari SH, Malek JA, Graumann J, Mook-Kanamori D, Schmidt F, Suhre K. A roadmap to the molecular human linking multiomics with population traits and diabetes subtypes. Nat Commun 2024; 15:7111. [PMID: 39160153 PMCID: PMC11333501 DOI: 10.1038/s41467-024-51134-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
In-depth multiomic phenotyping provides molecular insights into complex physiological processes and their pathologies. Here, we report on integrating 18 diverse deep molecular phenotyping (omics-) technologies applied to urine, blood, and saliva samples from 391 participants of the multiethnic diabetes Qatar Metabolomics Study of Diabetes (QMDiab). Using 6,304 quantitative molecular traits with 1,221,345 genetic variants, methylation at 470,837 DNA CpG sites, and gene expression of 57,000 transcripts, we determine (1) within-platform partial correlations, (2) between-platform mutual best correlations, and (3) genome-, epigenome-, transcriptome-, and phenome-wide associations. Combined into a molecular network of > 34,000 statistically significant trait-trait links in biofluids, our study portrays "The Molecular Human". We describe the variances explained by each omics in the phenotypes (age, sex, BMI, and diabetes state), platform complementarity, and the inherent correlation structures of multiomics data. Further, we construct multi-molecular network of diabetes subtypes. Finally, we generated an open-access web interface to "The Molecular Human" ( http://comics.metabolomix.com ), providing interactive data exploration and hypotheses generation possibilities.
Collapse
Affiliation(s)
- Anna Halama
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| | - Shaza Zaghlool
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Gaurav Thareja
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Sara Kader
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Wadha Al Muftah
- Qatar Genome Program, Qatar Foundation, Qatar Science and Technology Park, Innovation Center, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | | | - Hina Sarwath
- Proteomics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | | | - Nisha Stephan
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Sabine Ameling
- German Centre for Cardiovascular Research, Partner Site Greifswald, University Medicine Greifswald, Greifswald, Germany
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | - Jan Krumsiek
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Cornelia Prehn
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jochen M Schwenk
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Nele Friedrich
- German Centre for Cardiovascular Research, Partner Site Greifswald, University Medicine Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- German Centre for Cardiovascular Research, Partner Site Greifswald, University Medicine Greifswald, Greifswald, Germany
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - S Hani Najafi-Shoushtari
- MicroRNA Core Laboratory, Division of Research, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Joel A Malek
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
- Genomics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Johannes Graumann
- Institute of Translational Proteomics, Department of Medicine, Philipps-Universität Marburg, Marburg, Germany
| | - Dennis Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Li Q, Gloudemans MJ, Geisinger JM, Fan B, Aguet F, Sun T, Ramaswami G, Li YI, Ma JB, Pritchard JK, Montgomery SB, Li JB. RNA editing underlies genetic risk of common inflammatory diseases. Nature 2022; 608:569-577. [PMID: 35922514 PMCID: PMC9790998 DOI: 10.1038/s41586-022-05052-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/29/2022] [Indexed: 12/12/2022]
Abstract
A major challenge in human genetics is to identify the molecular mechanisms of trait-associated and disease-associated variants. To achieve this, quantitative trait locus (QTL) mapping of genetic variants with intermediate molecular phenotypes such as gene expression and splicing have been widely adopted1,2. However, despite successes, the molecular basis for a considerable fraction of trait-associated and disease-associated variants remains unclear3,4. Here we show that ADAR-mediated adenosine-to-inosine RNA editing, a post-transcriptional event vital for suppressing cellular double-stranded RNA (dsRNA)-mediated innate immune interferon responses5-11, is an important potential mechanism underlying genetic variants associated with common inflammatory diseases. We identified and characterized 30,319 cis-RNA editing QTLs (edQTLs) across 49 human tissues. These edQTLs were significantly enriched in genome-wide association study signals for autoimmune and immune-mediated diseases. Colocalization analysis of edQTLs with disease risk loci further pinpointed key, putatively immunogenic dsRNAs formed by expected inverted repeat Alu elements as well as unexpected, highly over-represented cis-natural antisense transcripts. Furthermore, inflammatory disease risk variants, in aggregate, were associated with reduced editing of nearby dsRNAs and induced interferon responses in inflammatory diseases. This unique directional effect agrees with the established mechanism that lack of RNA editing by ADAR1 leads to the specific activation of the dsRNA sensor MDA5 and subsequent interferon responses and inflammation7-9. Our findings implicate cellular dsRNA editing and sensing as a previously underappreciated mechanism of common inflammatory diseases.
Collapse
Affiliation(s)
- Qin Li
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Michael J. Gloudemans
- Department of Pathology, Stanford University, Stanford, CA, USA.,Biomedical Informatics Training Program, Stanford University, Stanford, CA, USA
| | | | - Boming Fan
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | | | - Tao Sun
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Gokul Ramaswami
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Yang I. Li
- Department of Genetics, Stanford University, Stanford, CA, USA.,Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jin-Biao Ma
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jonathan K. Pritchard
- Department of Genetics, Stanford University, Stanford, CA, USA.,Department of Biology, Stanford University, Stanford, CA, USA
| | - Stephen B. Montgomery
- Department of Genetics, Stanford University, Stanford, CA, USA.,Department of Pathology, Stanford University, Stanford, CA, USA.,These authors contributed equally: Stephen B. Montgomery, Jin Billy Li
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Wright CJ, Smith CWJ, Jiggins CD. Alternative splicing as a source of phenotypic diversity. Nat Rev Genet 2022; 23:697-710. [PMID: 35821097 DOI: 10.1038/s41576-022-00514-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/27/2022]
Abstract
A major goal of evolutionary genetics is to understand the genetic processes that give rise to phenotypic diversity in multicellular organisms. Alternative splicing generates multiple transcripts from a single gene, enriching the diversity of proteins and phenotypic traits. It is well established that alternative splicing contributes to key innovations over long evolutionary timescales, such as brain development in bilaterians. However, recent developments in long-read sequencing and the generation of high-quality genome assemblies for diverse organisms has facilitated comparisons of splicing profiles between closely related species, providing insights into how alternative splicing evolves over shorter timescales. Although most splicing variants are probably non-functional, alternative splicing is nonetheless emerging as a dynamic, evolutionarily labile process that can facilitate adaptation and contribute to species divergence.
Collapse
Affiliation(s)
- Charlotte J Wright
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK. .,Department of Zoology, University of Cambridge, Cambridge, UK.
| | | | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Hagen T, Laski A, Brümmer A, Pruška A, Schlösser V, Cléry A, Allain FHT, Zenobi R, Bergmann S, Hall J. Inosine Substitutions in RNA Activate Latent G-Quadruplexes. J Am Chem Soc 2021; 143:15120-15130. [PMID: 34520206 DOI: 10.1021/jacs.1c05214] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It is well-accepted that gene expression is heavily influenced by RNA structure. For instance, stem-loops and G-quadruplexes (rG4s) are dynamic motifs in mRNAs that influence gene expression. Adenosine-to-inosine (A-to-I) editing is a common chemical modification of RNA which introduces a nucleobase that is iso-structural with guanine, thereby changing RNA base-pairing properties. Here, we provide biophysical, chemical, and biological evidence that A-to-I exchange can activate latent rG4s by filling incomplete G-quartets with inosine. We demonstrate the formation of inosine-containing rG4s (GI-quadruplexes) in vitro and verify their activity in cells. GI-quadruplexes adopt parallel topologies, stabilized by potassium ions. They exhibit moderately reduced thermal stability compared to conventional G-quadruplexes. To study inosine-induced structural changes in a naturally occurring RNA, we use a synthetic approach that enables site-specific inosine incorporation in long RNAs. In summary, RNA GI-quadruplexes are a previously unrecognized structural motif that may contribute to the regulation of gene expression in vivo.
Collapse
Affiliation(s)
- Timo Hagen
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Artur Laski
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Anneke Brümmer
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Adam Pruška
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Verena Schlösser
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Antoine Cléry
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.,Biomolecular NMR Spectroscopy Platform, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Department of Integrative Biomedical Sciences, University of Cape Town, 7925 Cape Town, South Africa
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
5
|
Abramov S, Boytsov A, Bykova D, Penzar DD, Yevshin I, Kolmykov SK, Fridman MV, Favorov AV, Vorontsov IE, Baulin E, Kolpakov F, Makeev VJ, Kulakovskiy IV. Landscape of allele-specific transcription factor binding in the human genome. Nat Commun 2021; 12:2751. [PMID: 33980847 PMCID: PMC8115691 DOI: 10.1038/s41467-021-23007-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/12/2021] [Indexed: 12/28/2022] Open
Abstract
Sequence variants in gene regulatory regions alter gene expression and contribute to phenotypes of individual cells and the whole organism, including disease susceptibility and progression. Single-nucleotide variants in enhancers or promoters may affect gene transcription by altering transcription factor binding sites. Differential transcription factor binding in heterozygous genomic loci provides a natural source of information on such regulatory variants. We present a novel approach to call the allele-specific transcription factor binding events at single-nucleotide variants in ChIP-Seq data, taking into account the joint contribution of aneuploidy and local copy number variation, that is estimated directly from variant calls. We have conducted a meta-analysis of more than 7 thousand ChIP-Seq experiments and assembled the database of allele-specific binding events listing more than half a million entries at nearly 270 thousand single-nucleotide polymorphisms for several hundred human transcription factors and cell types. These polymorphisms are enriched for associations with phenotypes of medical relevance and often overlap eQTLs, making candidates for causality by linking variants with molecular mechanisms. Specifically, there is a special class of switching sites, where different transcription factors preferably bind alternative alleles, thus revealing allele-specific rewiring of molecular circuitry.
Collapse
Affiliation(s)
- Sergey Abramov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexandr Boytsov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Daria Bykova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry D Penzar
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Ivan Yevshin
- Federal Research Center for Information and Computational Technologies, Novosibirsk, Russia
- Sirius University of Science and Technology, Sochi, Russia
- BIOSOFT.RU LLC, Novosibirsk, Russia
| | - Semyon K Kolmykov
- Federal Research Center for Information and Computational Technologies, Novosibirsk, Russia
- Sirius University of Science and Technology, Sochi, Russia
- BIOSOFT.RU LLC, Novosibirsk, Russia
| | - Marina V Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexander V Favorov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ilya E Vorontsov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Eugene Baulin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute of Mathematical Problems of Biology RAS-The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Russia
| | - Fedor Kolpakov
- Federal Research Center for Information and Computational Technologies, Novosibirsk, Russia
- Sirius University of Science and Technology, Sochi, Russia
- BIOSOFT.RU LLC, Novosibirsk, Russia
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
- State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center Kurchatov Institute, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Ivan V Kulakovskiy
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|