2
|
Schincariol-Manhe B, Campagnolo É, Spineli-Silva S, de Leeuw N, Correia-Costa GR, Pessoa A, de Souza CFM, Stevens C, Javaher P, Scallet HF, Mohr J, Biskup S, Herkert JC, Pfundt R, Mehta L, Rekab A, Elloumi HZ, Sanyoura M, Maciel-Guerra AT, Gil-da-Silva-Lopes VL, Dos Santos AM, Vieira TP. Novel variants in the SOX11 gene: clinical description of seven new patients. Eur J Hum Genet 2024:10.1038/s41431-024-01695-8. [PMID: 39333428 DOI: 10.1038/s41431-024-01695-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/05/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Pathogenic SOX11 variants have been associated with intellectual developmental disorder with microcephaly, and with or without ocular malformations or hypogonadotropic hypogonadism (HH) (IDDMOH, OMIM # 615866). In this article, we report seven new patients with de novo SOX11 variants. Five of the variants are missense, one nonsense, and one whole-gene deletion, most of them are novel variants. The main clinical features included neurodevelopmental delay (7/7) and intellectual disability (5/7), autism/attention deficit hyperactivity disorder (5/7), microcephaly (4/7), short stature (4/7), hypotonia (4/7), and clinodactyly of the 5th fingers (5/7). HH was confirmed in two female patients with primary amenorrhea, nonvisualized/prepubertal size of the uterus, and nonvisualized ovaries. Two of the male patients presented with micropenis, two had cryptorchidism, and one had decreased testicular size, which are suggestive findings of HH. This article contributes to the clinical characterization of patients with SOX11 variants and supports the role of this gene in HH.
Collapse
Affiliation(s)
- Beatriz Schincariol-Manhe
- Department of Translational Medicine - Medical Genetics and Genomic Medicine, School of Medical Sciences, Universidade Estadual de Campinas, São Paulo, Brazil
| | | | - Samira Spineli-Silva
- Department of Translational Medicine - Medical Genetics and Genomic Medicine, School of Medical Sciences, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud university medical center, Nijmegen, Netherlands
| | - Gabriela Roldão Correia-Costa
- Department of Translational Medicine - Medical Genetics and Genomic Medicine, School of Medical Sciences, Universidade Estadual de Campinas, São Paulo, Brazil
| | - André Pessoa
- Hospital Infantil Albert Sabin - Fortaleza-Ce / Ceara State University - UECE, Ceará, Brazil
| | | | - Cathy Stevens
- University of Tennessee College of Medicine, Chattanooga, TN, USA
| | | | - Helena Fabbri Scallet
- Center for Molecular Biology and Genetic Engineering (CBMEG), Universidade Estadual de Campinas, Campinas, Brazil
| | - Julia Mohr
- Zentrum für Humangenetik Tübingen, Tübingen, Germany
| | - Saskia Biskup
- CeGaT GmbH and Zentrum für Humangenetik Tübingen, Tübingen, Germany
| | - Johanna C Herkert
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud university medical center, Nijmegen, Netherlands
| | - Lakshmi Mehta
- Division of Clinical Genetics, Morgan Stanley Children's Hospital - Columbia University Medical Center, New York, NY, USA
| | - Aisha Rekab
- Division of Clinical Genetics, Morgan Stanley Children's Hospital - Columbia University Medical Center, New York, NY, USA
| | | | | | - Andréa Trevas Maciel-Guerra
- Department of Translational Medicine - Medical Genetics and Genomic Medicine, School of Medical Sciences, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Vera Lúcia Gil-da-Silva-Lopes
- Department of Translational Medicine - Medical Genetics and Genomic Medicine, School of Medical Sciences, Universidade Estadual de Campinas, São Paulo, Brazil
| | | | - Társis Paiva Vieira
- Department of Translational Medicine - Medical Genetics and Genomic Medicine, School of Medical Sciences, Universidade Estadual de Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Wu R, Tang W, Li P, Meng Z, Li X, Liang L. Identification of a novel phenotype of external ear deformity related to Coffin-Siris syndrome-9 and literature review. Am J Med Genet A 2024; 194:e63626. [PMID: 38591849 DOI: 10.1002/ajmg.a.63626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/13/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
De novo germline variants of the SRY-related HMG-box 11 gene (SOX11) have been reported to cause Coffin-Siris syndrome-9 (CSS-9), a rare congenital disorder associated with multiple organ malformations, including ear anomalies. Previous clinical and animal studies have found that intragenic pathogenic variant or haploinsufficiency in the SOX11 gene could cause inner ear malformation, but no studies to date have documented the external ear malformation caused by SOX11 deficiency. Here, we reported a Chinese male with unilateral microtia and bilateral sensorineural deafness who showed CSS-like manifestations, including dysmorphic facial features, impaired neurodevelopment, and fingers/toes malformations. Using trio-based whole-exome sequencing, a de novo missense variant in SOX11 (NM_003108.4: c.347A>G, p.Y116C) was identified and classified as pathogenic variant as per American College of Medical Genetics guidelines. Moreover, a systematic search of the literature yielded 12 publications that provided data of 55 SOX11 intragenic variants affecting various protein-coding regions of SOX11 protein. By quantitatively analyzing phenotypic spectrum information related to these 56 SOX11 variants (including our case), we found variants affecting different regions of SOX11 protein (high-mobility group [HMG] domain and non-HMG regions) appear to influence the phenotypic spectrum of organ malformations in CSS-9; variants altering the HMG domain were more likely to cause the widest range of organ anomalies. In summary, this is the first report of CSS with external ear malformation caused by pathogenic variant in SOX11, indicating that the SOX11 gene may be not only essential for the development of the inner ear but also critical for the morphogenesis of the external ear. In addition, thorough clinical examination is recommended for patients who carry pathogenic SOX11 variants that affect the HMG domain, as these variants may cause the widest range of organ anomalies underlying this condition.
Collapse
Affiliation(s)
- Ruohao Wu
- Department of Children's Neuroendocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenting Tang
- Department of Research and Molecular Diagnostics, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pinggan Li
- Department of Children's Neuroendocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhe Meng
- Department of Children's Neuroendocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaojuan Li
- Department of Cellular and Molecular Diagnostics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liyang Liang
- Department of Children's Neuroendocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Al-Jawahiri R, Foroutan A, Kerkhof J, McConkey H, Levy M, Haghshenas S, Rooney K, Turner J, Shears D, Holder M, Lefroy H, Castle B, Reis LM, Semina EV, Lachlan K, Chandler K, Wright T, Clayton-Smith J, Hug FP, Pitteloud N, Bartoloni L, Hoffjan S, Park SM, Thankamony A, Lees M, Wakeling E, Naik S, Hanker B, Girisha KM, Agolini E, Giuseppe Z, Alban Z, Tessarech M, Keren B, Afenjar A, Zweier C, Reis A, Smol T, Tsurusaki Y, Nobuhiko O, Sekiguchi F, Tsuchida N, Matsumoto N, Kou I, Yonezawa Y, Ikegawa S, Callewaert B, Freeth M, Kleinendorst L, Donaldson A, Alders M, De Paepe A, Sadikovic B, McNeill A. SOX11 variants cause a neurodevelopmental disorder with infrequent ocular malformations and hypogonadotropic hypogonadism and with distinct DNA methylation profile. Genet Med 2022; 24:1261-1273. [PMID: 35341651 PMCID: PMC9245088 DOI: 10.1016/j.gim.2022.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022] Open
Abstract
PURPOSE This study aimed to undertake a multidisciplinary characterization of the phenotype associated with SOX11 variants. METHODS Individuals with protein altering variants in SOX11 were identified through exome and genome sequencing and international data sharing. Deep clinical phenotyping was undertaken by referring clinicians. Blood DNA methylation was assessed using Infinium MethylationEPIC array. The expression pattern of SOX11 in developing human brain was defined using RNAscope. RESULTS We reported 38 new patients with SOX11 variants. Idiopathic hypogonadotropic hypogonadism was confirmed as a feature of SOX11 syndrome. A distinctive pattern of blood DNA methylation was identified in SOX11 syndrome, separating SOX11 syndrome from other BAFopathies. CONCLUSION SOX11 syndrome is a distinct clinical entity with characteristic clinical features and episignature differentiating it from BAFopathies.
Collapse
Affiliation(s)
- Reem Al-Jawahiri
- Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
| | - Aidin Foroutan
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada; The Archie and Irene Verspeeten Clinical Genome Centre, London Health Sciences Foundation, London Health Sciences Centre, London, Ontario, Canada
| | - Jennifer Kerkhof
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada; The Archie and Irene Verspeeten Clinical Genome Centre, London Health Sciences Foundation, London Health Sciences Centre, London, Ontario, Canada
| | - Haley McConkey
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada; The Archie and Irene Verspeeten Clinical Genome Centre, London Health Sciences Foundation, London Health Sciences Centre, London, Ontario, Canada
| | - Michael Levy
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada; The Archie and Irene Verspeeten Clinical Genome Centre, London Health Sciences Foundation, London Health Sciences Centre, London, Ontario, Canada
| | - Sadegheh Haghshenas
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada; The Archie and Irene Verspeeten Clinical Genome Centre, London Health Sciences Foundation, London Health Sciences Centre, London, Ontario, Canada
| | - Kathleen Rooney
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada; The Archie and Irene Verspeeten Clinical Genome Centre, London Health Sciences Foundation, London Health Sciences Centre, London, Ontario, Canada
| | - Jasmin Turner
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Debbie Shears
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Muriel Holder
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Henrietta Lefroy
- Peninsula Clinical Genetics Service, RD&E Heavitree Hospital, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Bruce Castle
- Peninsula Clinical Genetics Service, RD&E Heavitree Hospital, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Linda M Reis
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Children's Wisconsin, Milwaukee, WI
| | - Elena V Semina
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Children's Wisconsin, Milwaukee, WI
| | - Katherine Lachlan
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Kate Chandler
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Thomas Wright
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Franziska Phan Hug
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Lucia Bartoloni
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Sabine Hoffjan
- Ruhr-Universitat Bochum, Abteilung für Humangenetik, Bochum, Germany
| | - Soo-Mi Park
- Clinical Genetics, Addenbrooke's Treatment Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Ajay Thankamony
- Clinical Genetics, Addenbrooke's Treatment Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Melissa Lees
- Clinical Genetics, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Emma Wakeling
- Clinical Genetics, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Swati Naik
- West Midlands Regional Clinical Genetics Centre and Department of Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| | - Britta Hanker
- Ambulanzzentrum UKSH, Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Emanuele Agolini
- Medical Genetics Laboratory, Bambino Gesu Children's Hospital, Rome, Italy
| | - Zampino Giuseppe
- Paediatric Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | | | - Boris Keren
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alexandra Afenjar
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christiane Zweier
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andre Reis
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Smol
- EA7364 RADEME, Institute of Medical Genetics, Lille University Hospital, Lille University, Lille, France
| | - Yoshinori Tsurusaki
- Faculty of Nutritional Science, Sagami Women's University, Sagamihara, Japan
| | - Okamoto Nobuhiko
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Futoshi Sekiguchi
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ikuyo Kou
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - Yoshiro Yonezawa
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan; Department of Orthopedic Surgery, Keio University School of Medicine, Keio University, Tokyo, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Megan Freeth
- Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
| | - Lotte Kleinendorst
- Centrum voor Medische Genetica - UZ Gent, Ghent University Hospital, Gent, Belgium
| | - Alan Donaldson
- Department of Clinical Genetics Service, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Marielle Alders
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne De Paepe
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.
| | - Alisdair McNeill
- Department of Neuroscience, The Medical School, The University of Sheffield, Sheffield, United Kingdom; Department of Clinical Genetics, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, United Kingdom.
| |
Collapse
|